ACID-BASE CALCULATIONS

- 1. In each of the following solutions, determine: i) hydronium ion concentration iii) pH ii) hydroxide ion concentration iv) pOH
 - a) 0.030 mol/dm³ HCl d) 0.050 mol/dm³ Ca(OH)₂
 - b) $0.125 \text{ mol/dm}^3 \text{HBr}$ e) 0.100 mol/dm³ H_2CO_3
 - c) 0.025 mol/dm³ NaOH f) $0.250 \text{ mol/dm}^3 \text{ HCN}$
- 2. Calculate $[H_3O^+]$, $[ClO_4^-]$ and $[OH^-]$ in an aqueous solution that is 0.150 M in $HClO_4(aq)$. Is the solution acidic or basic?
- 3. Calculate , $[OH^{-}]$, $[K^{+}]$ and $[H_{3}O^{+}]$ in an aqueous solution that is 0.250 M in KOH(aq). Is the solution acidic or basic?
- 4. Compute $[Ca^{2+}]$, $[OH^{-}]$ and $[H_3O^{+}]$ for a solution that is prepared by dissolving 0.600 g of $Ca(OH)_2$ in enough water to make 0.500 dm³ of solution.
- 5. The pH of human muscle fluid is 6.8. Compute the value of $[H_3O^*]$ in muscle fluid at 25°C.
- 6. The pH of household ammonia is about 12. Calculate the value of [OH⁻] for the ammonia solution.
- The pH of human blood is fairly constant at 7.4. Compute the hydronium ion and the hydroxide ion 7. concentrations in human blood.
- 8. The pH of the world's oceans is remarkably constant at 8.15. Compute the hydronium ion and hydroxide ion concentrations in the oceans.
- Normal rainwater has a pH of about 5.6, whereas what is called acid rain has been observed to have pH 9. values as low as 3.0. Compute the ratio of $[H_3O^*]$ in acid rain to that in normal rain.
- 10. The value of K_a in water at 25°C for benzoic acid, HC₇H₅O₂ is 6.46 x 10⁻⁵. Calculate the pH of an aqueous solution with a total concentration of $HC_7H_5O_2$ of 0.0200 M.
- 11. Sulfamic acid, HO₃SNH₂, is used as a stabilizer for chlorine in swimming pools. Calculate the pH of a 0.0400 M sulfamic acid solution given that $K_a = 0.100$.
- 12. Calculate the pH of an aqueous solution of 0.150 M HClO.
- 13. Suppose two aspirin tablets (1 tablet = 324 mg) are dissolved in enough water to make 500.0 cm³ of solution. Compute the pH of the resulting solution if $K_a = 2.75 \times 10^{-5}$ and the molar mass for aspirin (acetylsalicylic acid) is 180.15 g/mol.
- 14. What is the hydronium ion concentration in a solution of 0.100 M CH₃COOH and 2.00 M NaCH₃COO?
- 15. What is the hydronium ion concentration in a solution of 0.0875 M HClO and 0.0550 M NaClO?
- 16. Calculate the $[H_3O^+]$ in a solution that is 1.125 M CH₃COOH if enough NaCH₃COO is added to make the solution 0.5005 M with respect to the CH_3COO^2 ?
- 17. A solution was made up to be 0.100 M in chloroacetic acid ($HC_2H_2O_2CI$) and also 0.00200 M in sodium chloroacetate (NaC₂H₂O₂Cl). The K_a for chloroacetic acid is 1.36×10^{-3} . Determine the pH of the solution.
- 18. Find the pH of a litre of solution, in which is dissolved 0.0800 mol of HC₂H₃O₂ and 0.100 mol of $NaC_2H_3O_2$.
- 19. 25.0 mL of a 0.100 M HCOOH is added to 35.0 mL of 0.0500 M HCOONa. Determine the pH.
- 20. 100.0 mL of 0.300 M CH₃COOH is mixed with 100.0 mL of 0.400 M CH₃COONa. Determine the pH.

- g) 0.125 mol/dm³ HNO₂
 - h) 0.150 mol/dm³ HOOCCOOH i) $0.175 \text{ mol/dm}^3 \text{ H}_2 \text{SO}_3$