Isotopes

1	Symbol	Mass Number	Atomic Number	# of Protons	# of Neutrons	# of Electrons
۵	²³ ₁₁ Na					
Ь	²⁰ ₁₀ Ne					
с	²⁰¹ ₈₀ Hg					
d	⁶⁵ ₃₀ Zn					
e	²⁷ ₁₃ Al					
f		84	36			36
g				35	45	35
h		127	53			54
Ι			27		32	27
j	Zn				36	
k	Cd²⁺	112				
Ι				38	50	36
m	X ²⁻				75	54
n	X ³⁺	103				42
0	X ³⁻		33		42	

2. The following mixtures of isotopes are found in nature. Calculate the expected atomic mass of a sample of each mixture.

a) ${}^{10}B = 18.8\%$, ${}^{11}B = 81.2\%$

- b) ⁶⁹Ga = 60.0%, ⁷¹Ga = 40.0%
- c) 70 Ge = 20.5%, 72 Ge = 27.4%, 73 Ge = 7.8%, 74 Ge = 36.5%, 76 Ge = 7.8%
- d) ⁶⁴Zn = 48.9%, ⁶⁶Zn = 27.8%, ⁶⁷Zn = 4.1%, ⁶⁸Zn = 18.6%, ⁷⁰Zn = 0.6%
- e) 90 Zr = 51.5%, 91 Zr = 11.2%, 92 Zr = 17.1%, 94 Zr = 17.4%, 96 Zr = 2.8%
- f) 92 Mo = 15.8%, 94 Mo = 9.0%, 95 Mo = 15.7%, 96 Mo = 16.5%, 97 Mo = 9.5%, 98 Mo = 23.8%, 100 Mo = 9.6%
- 3. Calculate the percentage of each isotope present in the following mixtures.
 - a) A mixture of ⁶Li and ⁷Li has an average mass of 6.94 u.
 - b) A mixture of ⁷⁹Br and ⁸¹Br has an average mass of 79.9 u.
 - c) A mixture of ²⁰Ne, which has a mass of 19.992 u, and ²²Ne, which has a mass of 21.991 u, has an average mass of 20.179 u.
 - d) A mixture of ¹⁰⁷Ag, with an atomic mass of 106.9041 u, and ¹⁰⁹ Ag, with an atomic mass of 108.9047 u, that has an average mass of 107.9 u.
 - e) A mixture of ¹¹³In and ¹¹⁵In has an average mass of 114.8 u.
 - *f) Naturally occurring silicon consists of three isotopes, ²⁸Si, ²⁹Si, and ³⁰Si, whose atomic masses are 27.9769, 28.9865, and 29.9838, respectively. The most abundant isotope is ²⁸Si, which accounts for 92.23% of naturally occurring silicon. Given that the observed atomic mass of silicon is 28.0855, calculate the percentages of ²⁹Si and ³⁰Si in nature.
 - *g) Naturally, occurring strontium consists of four isotopes, ⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr, and ⁸⁸Sr, whose atomic masses are 83.9134, 85.9094, 86.9089 and 87.9056 amu, respectively. The most abundant isotope is ⁸⁸Sr, which accounts for 82.6 percent of naturally occurring strontium, and the least abundant isotope is ⁸⁴Sr, which accounts for 0.5 percent of naturally occurring strontium. Given that the observed atomic mass of strontium is 87.62 amu, calculate the percentages of ⁸⁶Sr and ⁸⁷Sr in nature.