Review Lesson Powers of Ten	1 The mass of an electron is 0.00000000000000000000000000000000000
7 10 ²¹ This number, I am told is a sextillion. Our aim is to make such words useless.	8 Now multiply: and $10^{5} \times 10^{-2} = 10^{-1}$ $10^{2} \times 10^{-2} = 10^{-1}$
14 1.5 x 10 ⁻¹⁸ The point took 18 steps to get there.	15 It works in the other direction too. The number below is one and a quarter quintillion. Walk the point until it is to the right of the 1, and count off as you go. The power of ten will be the number of steps you took. 125000000000000000000000000000000000000
21 3 x 10 ⁻⁴ 2 x 10 ⁻⁴ which is 2.8 x 10 ⁻⁴	22 Re-do this column, so it can be added. 1.5×10^{-6} $\times 10^{-6}$ 1.8×10^{-4} $\times 10^{-6}$ 1.1×10^{-3} $\times 10^{-6}$ 2.5×10^{-5} $\times 10^{-6}$ 29
2 x 10-13	Negative exponents are handled in a similar way. Give this one the reducing treatment. $\frac{(4x10^3)(2.2x10^{-2})}{4.4x10^{-6}}$
35 $10^7 \times \sqrt{25}$ $= 5 \times 10^7$	To take cube root we divide the exponent by 3. Example: $\sqrt[3]{10^9} = 10^3$ Can you do $\sqrt[3]{10^{10}}$ Hint: First write it as $\sqrt[3]{10^9 x 10}$
42 (a) 10 ⁻¹ (b) 10 ⁻¹² Quite Different	43 If you raise 2 x 10 ⁴ to the third power, that is, $(2x10^4)^3$ both the 2 and the 4 get raised to the third power. Answer is 8 x 10 ¹² . Do this: $(4 \times 10^2)^{1/2} = ??$

1 The correct answer will be in this space.Give yourself a mark in the little square2 if right0 if wrong		2 In 10 ³ , the 3 is the exponent and it says that we have three tens, all multiplied together; that is $10^3 = 10 \times 10 \times 10$
1 if in between	Here	Or, $10^3 = 1000$. Finish this: $10^5 = ??$
8 10 ³ and 10 ⁰		9 We haven't run into 10^{0} before. (Remember where it came from: $10^{2} \ge 10^{-2}$ which is 100 $\ge .01$ or just <u>one</u>). 10^{0} is 1. We won't do anything more with 10^{0} now; just tuck it away in your memory. Next, let's express 5,000,000 as
15 1.25 x 10 ¹⁸		16 One more bit of drill. Multiply these: $(10^{-5})(800 \ge 10^8)$ Think of the lowly amoeba: To multiply it must divide!x 10
22 1.5 x 10 ⁻⁶ 180 x 10 ⁻⁶ 1100 x 10 ⁻⁶ 25 x 10 ⁻⁶		23 Add them, and express the answer so that there is only one digit to the left of the decimal point.Could have worked this problem as well by first converting them all to something time 10⁻³?
29 2 x 10 ⁷		30 What can you do about this one? $\frac{10^2 + 10^3}{10^2} \qquad \underline{\text{Watch out!}} \text{ You can't cancel that } 10^2 \text{ against the} \\ \text{other } 10^2. \ \underline{\text{No!}} \text{ Not when there is another term } \underline{\text{added}}.$
36 It can further be rewritten as $\sqrt[3]{10^9}$ x $\sqrt[3]{10}$ Then you get 10^3 x $\sqrt[3]{10}$		37 So you see there is one 10 we had to leave under a $\sqrt[3]{sign}$. Of course we can get it out by looking up the $\sqrt[3]{10}$, which is 2.154. so our ans. would be 2.154 x 10 ³ . Try $\sqrt[3]{2.7x10^{13}}$. (Keep in mind that 27 is the cube of something.)
$ \begin{array}{c} 43 \\ 2 \times 10 \text{ or } 20 \\ \text{It is} \\ \sqrt{4} \times \sqrt{100} \end{array} $		44 We have no new tricks to introduce. so let's exercise our talents a little. Exercise and practice is the glue that sticks things in your mind? Step the decimal point and count off. 165000000000000000000000000000000000000

2 10x10x10x10x10		3 A negative exponent, such as 10^{-3} means the reciprocal of 10^3 . Ex: $10^{-3} = \frac{1}{2}$ Similarly $10^3 = \frac{1}{2}$
or, 100,000		10^{-3} 10^{-3}
		Finish this: $\frac{1}{10^{-2}} = 10^{-1}$
9 5 x 10 ⁶		10 5,500,000 would be expressed as 5.5×10^6 . It could be written as 55×10^5 , but <u>by custom</u> we do it so there is only one figure to the left of the decimal point.
		5,525,000 would be $x = 10^{6}$
16 800 x 10 ³ is OK, but a better form wo 8 x 10 ⁵	uld be	17 Our next project is to learn to <u>add</u> and <u>subtract</u> numbers like 2.5 x 10^5 and 1.2 x 10^4 . The catch is that the two have different powers of ten. We can add or subtract <u>if</u> we first make them have the <u>same</u> power of ten.
		Next Page>
23 1,3605 x 10 ⁻³ Yes you could have.		Now let's go back to multiplication for a moment. When we want to multiply 1.5×10^3 by 2×10^2 we do it by multiplying the 1.5×2 to get 3 and the $10^3 \times 10^2$ to get 10^5 , making 3×10^5 . Try $3 \times 10^7 \times 4 \times 10^5$
30		31 How did we get it? Either by writing
11	[$\frac{10^{2} + 10^{3}}{10^{2}} as \frac{10^{2}(1+10)}{10^{2}} \text{ or as } \frac{1.1x10^{3}}{10^{2}} \text{ and canceling as shown.}$ Now you do $\frac{10^{5} + 10^{2}}{10^{2}}$
37 3 x 10 ⁴		38 Now let me tell you another way of writing square roots and cube roots $\sqrt{100}$ is $100^{1/2}$ and $\sqrt[3]{100}$ is $100^{1/3}$ and $\sqrt[3]{10^3}$ would be $(10^3)^{1/3}$ When a power is raised to a power, we multiply the exponents together. $(10^3)^{1/3}$ is 10^1 . What is $(10^6)^{1/2}$?
44		45
1.65 x 10 ¹⁵ 3.5 x 10 ⁷	[Add these: 5.2×10^{27} 2.0 x 10 ²⁵ 5.4 x 10 ²⁶

3		4 Do these
102		$10^{-2} = \frac{1}{-2}$
102		10?
		2 1
		$10^3 = \frac{1}{2}$
10		11 Before we go turther, a little drill: Complete these:
		Complete tilese.
5.525 x 10 ⁶		$\frac{1}{1}$ - 10? $\frac{1}{1}$ - 2 r 10?
		$\frac{10^{-5}}{10^{-5}}$ $\frac{10}{5x10^8}$ $\frac{10^{-1}x10}{5x10^8}$
17 Here is the problem again:		18 If we move the decimal in the second number by one step to
		the left, we have $2.5 \ge 10^5 + .12 \ge 10^5$. Now we can add and get
$2.5 \times 10^3 + 1.2 \times 10^4 = ?$		2.62×10^5 . Try rewriting the following so that they both will have
		the same power of 10.
		2×10 and 3.5×10^2
24		25 Do these:
27		
$12 \ge 10^{12}$, but we prefer to w	rite	$(5 \times 10^3) (6 \times 10^{-3}) = ?$
1.0 1013		(2, 103) (1, 2, 10, 10)
1.2×10^{13}		$(3 \times 10^{5}) (1.2 \times 10^{-10}) = ?$
31		32 We haven't mentioned division, as such, but I guess you know how to do it from what we have done with fractions. If you want
1001		to divide 10^6 by 10^4 , all you have to do is write it
OF		10^{6} 10 ²
1.001 x 10 ³		$\frac{10^4}{10^4} = 10^{-10}$, or you can simply subtract exponents.
38		39 The same goes for integral powers as for fractional powers.
		Study these example, and note how + and - exponents are treated.
103		$(10^2)^3 = 10^6$ $(10^2)^{-3} = 10^{-6}$ $(10^{-2})^{-2} = 10^4$
10		
		$(10^{-2})^{1/2} = 10^{-1}$ $(10^{-2})^{-1/2} = 10^{1}$ $10^{-1/2} = \frac{1}{10^{-1/2}}$
		$\sqrt{10}$
45	l	46 What is the cube (not cube root) of 4×10^{-72}
		Write the answer with one digit to the left of the decimal point.
5.76 x 10 ²⁷		

6	7 To multiply we simply add the exponents. For example
10-10	$10^{2} \times 10^{3}$ 105 This is reasonable because
10	$10^{-2} \times 10^{-2} = 10^{-2}$. This is reasonable because
If you forget whether it is one more or or less than the number of zeros, think of	the $10^2 \ge 10^3 = 10 \ge 10$
$1 = 10^{-1}$, as a check.	logether.
	Multiply this: $10^6 \times 10^{15} = 10^{??}$
13	14 Did you notice the exponent you had to use was just the
1.2×10^{-1} and 3.3×10^{-3}	number of places you had to step the decimal point over, to get to right of the first figure which was not zero. Do this one, and count as you walk the point along.
	$.00000000000000015 = 1.5 \times 10^{??}$
20	21 Here's another: (A subtraction and both have negative
150.4	exponents besides. Watch out!)
130.4	3 x 10 ⁻⁴ - 2 x 10 ⁻⁵
or	
1.504 x 10 ²	
27	28 Shake what you can out of this fellow. That is reduce him to
-	the simplest form.
$\frac{5}{$	4 103 00 102
$2x10^2$	$\frac{4x10^3 x2.2x10^2}{18}$
	$4.4x10^{18}$
34 Rewrite it	35 You can work this one the same way, only you can end up
	without any $$ at all.
$\sqrt{30x10^{\circ}}$ and the answer is	15
$103 \times \sqrt{20}$	$\sqrt{2.5 \times 10^{15}}$
10 ⁻⁵ X \ 30	——
41	42 Be sure you distinguish between these two operations:
10-4 10-4.5	(a) Multiplying 10^{-4} by 10^3 and (b) raising 10^{-4} to the 3rd
1012 103	power.
	(a) $10^{-4} \times 10^3 = 10$? (b) $(10^{-4})^3 = 10$?
48 If you checked it give yourself 2.	49 Verify this and you earn your diploma.
Incidentally, if we could pay you for doin this review would you take	$10^{5} \times 10^{1/2} \times 9 \times 10^{8} \times 10^{6} \times 10^{-20}$
	10^{-10} 10^{-10} 10^{-10}
$$2^{(2^3)}$ or $$2^{(3^2)}$??	$\frac{10^6 x 10^{-19} x 6 x 10 x \sqrt{10000}}{10^6 x 10^7 x 6 x 10 x \sqrt{10000}} = 1.5 x 10$
	THE END!!