CHEMISTRY

FORMULA TO NAME PRACTICE

These compounds to follow ARE NOT binary compounds. They contain three or more elements, as opposed to only two in a binary compound.	Step #2 - determine the name of the polyatomic ion. Nitrate is the name of NO $_3$.
The Greek method WILL NOT be used. That naming technique is used only for binary compounds of two nonmetals. That means, if you see a formula like	The correct name is iron(II) nitrate. The common name would be ferrous nitrate.
BaSO4, the name is not barium monosulfur tetraoxide. Many unaware students over the years have made this error and suffered for it.	Example #2 - write the name for NaOH Step #1 - the cation, Na ⁺ , does not show a variable
Consequently, a warning: it is important that you learn to recognize the presence of a polyatomic ion	charge, so no Roman numeral is needed. The name is sodium.
in a formula. Many students have made it their first priority to make a set of flashcards with the name on one side and the ion and its charge on the other. Then, carry them everywhere and use them.	Step#2 - OH is recognized as the hydroxide ion. The name of this compound is sodium hydroxide.
The cations used will be a mix of fixed charges AND variable charges. You must know which are which.	Example #3 - write the name for KMnO4
Another warning: you must also know the charges associated with each polyatomic ion. For example, NO ₃ is called nitrate and it has a minus one charge. Once again, many unaware students have thought this means nitrate has a minus three charge. IT DOES NOT.	Step #1 - the cation, K ⁺ , does not show a variable charge, so no Roman numeral is needed. The name is potassium. Step#2 - MnO4 is recognized as the permanganate
Use of Parenthesis	ion.
When more than one polyatomic ion is required,	The name of this compound is potassium permanganate.
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ .	
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the	Example #4 - write the name for Cu ₂ SO ₄
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula.	
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula. When you say a formula involving parenthesis out loud, you use the word "taken" as in the formula for ammonium sulfide, which is (NH ₄) ₂ S. Out loud, you	Example #4 - write the name for Cu₂SO₄ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, copper does show variable charge. If a variable charge cation is involved, you must determine the Roman numeral involved. You do this
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula. When you say a formula involving parenthesis out loud, you use the word "taken" as in the formula for	Example #4 - write the name for Cu₂SO₄ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, copper does show variable charge. If a variable charge cation is involved, you must determine the Roman numeral involved, you must determine the Roman numeral involved. You do this by computing the total charge contributed by the polyatomic ion. In this case, SO ₄ ² has a minus two charge and there is only one, making a total of minus
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula. When you say a formula involving parenthesis out loud, you use the word "taken" as in the formula for ammonium sulfide, which is (NH ₄) ₂ S. Out loud, you say "N H four taken twice S." OR with the formula for copper(II) chlorate, which is Cu(ClO ₃) ₂ . You say " Cu	Example #4 - write the name for Cu₂SO₄ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, copper does show variable charge. If a variable charge cation is involved, you must determine the Roman numeral involved, you must determine the Roman numeral involved. You do this by computing the total charge contributed by the polyatomic ion. In this case, SO ₄ ² has a minus two charge and there is only one, making a total of minus 2.
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula. When you say a formula involving parenthesis out loud, you use the word "taken" as in the formula for ammonium sulfide, which is (NH ₄) ₂ S. Out loud, you say "N H four taken twice S." OR with the formula for copper(II) chlorate, which is Cu(ClO ₃) ₂ . You say " Cu Cl O three taken twice."	Example #4 - write the name for Cu₂SO₄ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, copper does show variable charge. If a variable charge cation is involved, you must determine the Roman numeral involved, you must determine the Roman numeral involved. You do this by computing the total charge contributed by the polyatomic ion. In this case, SO ₄ ² has a minus two charge and there is only one, making a total of minus
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula. When you say a formula involving parenthesis out loud, you use the word "taken" as in the formula for ammonium sulfide, which is (NH ₄) ₂ S. Out loud, you say "N H four taken twice S." OR with the formula for copper(II) chlorate, which is Cu(ClO ₃) ₂ . You say " Cu Cl O three taken twice." Example #1 - write the name for Fe(NO ₃) ₂	Example #4 - write the name for Cu₂SO₄ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, copper does show variable charge. If a variable charge cation is involved, you must determine the Roman numeral involved. You do this by computing the total charge contributed by the polyatomic ion. In this case, SO ₄ ² has a minus two charge and there is only one, making a total of minus 2. Therefore, the copper must be a positive one. Why? Well, there must be a positive two to go with the negative two in order to make zero. Since the formula shows two copper atoms involved, each must
parenthesis are used to enclose the ion with the subscript going outside the parenthesis. For example, the very first formula used is Fe(NO ₃) ₂ . This means that two NO ₃ are involved in the compound. Without the parenthesis, the formula would be FeNO ₃ 2, a far cry from the correct formula. When you say a formula involving parenthesis out loud, you use the word "taken" as in the formula for ammonium sulfide, which is (NH ₄) ₂ S. Out loud, you say "N H four taken twice S." OR with the formula for copper(II) chlorate, which is Cu(ClO ₃) ₂ . You say " Cu Cl O three taken twice." Example #1 - write the name for Fe(NO ₃) ₂ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, iron does show variable charge.	 Example #4 - write the name for Cu₂SO₄ Step #1 - decide if the cation is one showing variable charge. If so, a Roman numeral will be needed. In this case, copper does show variable charge. If a variable charge cation is involved, you must determine the Roman numeral involved. You do this by computing the total charge contributed by the polyatomic ion. In this case, SO₄² has a minus two charge and there is only one, making a total of minus 2. Therefore, the copper must be a positive one. Why? Well, there must be a positive two to go with the negative two in order to make zero. Since the formula shows two copper atoms involved, each must be a plus one charge. Step #2 - determine the name of the polyatomic ion.

Example #5 - write the name for Ca(CIO3)2	10) NH4NO3
The first part of the name comes from the first element's name: calcium. You also determine that it is not a cation of variable charge. The second part of the name comes from the name	These formulas involve the use of a polyatomic ion. The cations are all of variable oxidation state, so Roman numerals are needed.
of the polyatomic ion: chlorate.	Write the correct name for:
This compound is named calcium chlorate.	11) Sn(NO ₃) ₂
Example #6 - write the name for Fe(OH)3	12) FePO4
Iron is an element with two possible oxidation states. The iron is a +3 charge because:	13) Cu ₂ SO ₄
(1) there are three hydroxides,	14) Ni(C ₂ H ₃ O ₂) ₂
(2) hydroxide is a minus one charge,(3) this gives a total charge of negative three and	15) HgCO3
(4) there is only one iron, so it must be a +3.	16) Pb(OH) ₄
Therefore the first part of the name is iron(III). The second part of the name is hydroxide, the name	17) Cu ₂ Cr ₂ O ₇
of the polyatomic ion.	18) Cu(ClO ₃) ₂
The name of this compound is iron(III) hydroxide (or ferric hydroxide when using the common method).	19) FeSO ₄
Practice Problems	20) Hg ₂ (ClO ₄) ₂
The cations in this first set are all of fixed oxidation state, so no Roman numerals are needed.	These formulas mix the use of the two types of cations.
Write the correct name for:	Write the correct name for:
1) AIPO4	21) KClO3
2) KNO ₂	22) SnSO ₄
3) NaHCO3	23) Al(MnO ₄) ₃
4) CaCO3	24) Pb(NO ₃) ₂
	25) Mg3(PO ₄) ₂
5) Mg(OH) ₂	26) CuH ₂ PO ₄
6) Na ₂ CrO ₄	27) CaHPO4
7) Ba(CN) 2	28) Fe(HCO ₃) ₃
7) Ba(CN) 2	29) Na ₂ CO ₃
8) K ₂ SO ₄	30) MnSO4
9) NaH2PO4	
	l