REACTION CATEGORY	DOUBLE REPLACEMENT
REACTION DESCRIPTION	During double replacement, the cations and anions of two different compounds switch places.
REACTION FORMAT	AB + CD> AD + CB
REACTION GUIDELINES	 It is important that the formulas of the products be written correctly. If they are correct, balancing the equation is a simple task; if not, the equation will probably never balance. In these reactions, there is never a change in oxidation state. Sometimes you must determine if a reaction actually takes place? For example :
	Does a mixture of NaCl and H ₂ SO ₄ react to give Na ₂ SO ₄ and HCl, or rather, does a mixture of Na ₂ SO ₄ and HCl react to give NaCl and H ₂ SO ₄ . Obviously we cannot test every reaction before we write the equation, but fortunately, there are certain conditions under which a reaction goes to completion (i.e goes in one direction only). These are summarized below.
	A reaction takes place or tends to go to completion if:
	a. One of the products is a gas and is allowed to escape. b. An unionized substance such as H ₂ O or NH ₃ is formed. c. An insoluble substance is formed.
	The first two of these are obvious if we are able to recognize which substances are gases. The most common inorganic gases are H ₂ , Cl ₂ , O ₂ , N ₂ , H ₂ S, HF, HCl, HBr, HI, CO, CO ₂ , SO ₂ , SO ₃ , NH ₃ , NO, N ₂ O, NO ₂ and HCN.
	The most difficult aspect of reactions of this type is the ability to recognize insoluble substances. Here are some solubility guidelines:
	 All nitrates and acetates are soluble. All chlorides, bromides, and iodides are soluble except those of Pb²⁺, Ag⁺, and Hg²⁺.
	3. All sulfates are soluble except those of Ba^{2+} , Sr^{2+} , and Pb^{2+} . CaSO ₄ , Ag ₂ SO ₄ , and Hg ₂ SO ₄ are slightly soluble.
	 4. All hydroxides are insoluble except those of group 1 in the periodic table, NH4⁺, and Ba²⁺. Ca(OH)₂ and Sr(OH)₂ are slightly soluble. 5. All carbonates and phosphates are insoluble except those of group 1 and NH4⁺.
	 NH4⁺. Many hydrogen phosphates are soluble. 6. All sulfides are insoluble except those of Group I and Group II in the periodic table and NH4⁺.
	In addition, keep in mind the following when H ₂ CO ₃ , H ₂ SO ₃ , and NH ₄ OH are formed as products: 7. H ₂ CO ₃ decomposes into CO ₂ + H ₂ O 8. H ₂ SO ₃ decomposes into SO ₂ + H ₂ O 9. NH ₄ OH decomposes into NH ₃ + H ₂ O
REACTION GUIDELINE EXAMPLES	$AgNO_3 + NaCI> AgCI + NaNO_3$ $CaCO_3 + HCI> CaCl_2 + CO_2 + H_2O (#7)$ $Pb(NO_3)_2 + CuSO_4> PbSO_4 + Cu(NO_3)_2$

PRACTICE REACTIONS

- 1) Ca(OH)₂ + H₃PO₄ --->
- 2) K₂CO₃ + BaCl₂ --->
- 3) Cd₃(PO₄)₂ + (NH₄)₂S --->
- 4) Co(OH)₃ + HNO₃ --->
- 5) AgNO₃ + KCl --->
- 6) Na₂CO₃ + H₂SO₄ --->
- 7) AI(OH)₃ + HC₂H₃O₂ --->
- 8) Al₂(SO₄)₃ + Ca₃(PO₄)₂ --->
- 9) Cr₂(SO₃)₃ + H₂SO₄ --->
- 10) AgC₂H₃O₂ + K₂CrO₄ --->
- 11) FeBr₂ + K2CO₃ --->
- 12) Ag₂S + CuCl₂ --->
- 13) Pb(NO₃)₂ + HI --->
- 14) Ba(ClO₃)₂ + H₂SO₄ --->
- 15) CuS + KCl --->

CHEMISTRY		DOUBLE REPLACEMENT REACTION WORKSHEET
16)	Na3PO4 + MgSO4	>
17)	Pb(NO ₃) ₂ + H ₂ SO ₄	>
18)	FeCl ₂ + H ₂ S	>
19)	KCI + H ₂ SO ₄	>
20)	HCI + NaOH	>
21)	FeBr3 + Ba(OH)2	>
22)	FeCl3 + Na3PO4	>
23)	Hg ₂ Cl ₂ + HCl	>
24)	CaS + HCI	>
25)	H ₂ O + K ₂ SO4	>
26)	NH ₄ CI + KOH	>
27)	NaNO3 + KC2H3O2	>
28)	Pb(C ₂ H ₃ O ₂) ₂ + KI	>
29)	NH ₄ OH + BaCl ₂	>
30)	Ca(NO3)2 + Na2SO4	>