Thermochemistry Review

Multiple Choice Questions

 1.	When the three types of energy changes are arranged in order of decreasing molar heat values, what is the correct order?							
	A.chemical, phase, nuclearC.nuclear, phase, chemicalB.nuclear, chemical, phaseD.phase, chemical, nuclear							
 2.	The temperature remains constant as energy is added to a substance. How may the substance be changing?A. from a gas to a solidC. from a liquid to a solidB. from a liquid to a gasD. in the amount of kinetic energy							
 3.	Which metal requires the most energy to raise 1.00 g of it by 1.00°C? A. aluminum B. copper C. lead D. nickel							
 4.	A substance has a molar heat of combustion of -810.4 kJ/mol. When 0.285 mol of the substance is burned in a calorimeter containing 8.60 kg of water, what is the increase of the water temperature? A. 0.156°C B. 6.41°C C. 7.89°C D. 12.8°C							
 5.	The addition of 9.54 kJ of heat is required to raise the temperature of 225.0 g of a liquid hydrocarbon from 20.5°C to 45.0°C. What is the heat capacity of this hydrocarbon? A. 0.94 J/g·°C B. 1.73 J/g·°C C. 1.88 J/g·°C D. 9.42 J/g·°C							
 6.	If the molar heat of fusion of sodium is 2.63 kJ/mol, how much energy is needed to melt 180.0 g of solid sodium at its melting point? A. 2.63 kJ B. 2.93 kJ C. 20.6 kJ D. 473 kJ							
 7.	Which process is exothermic? A. the boiling of liquid nitrogen C. the sublimation of dry ice B. the freezing of water D. the vaporization of water							
 8.	If the heat of formation for the chemical reaction, $S_8(s) + 12O_2(g) \rightarrow 85O_3(g)$, is -395.7 kJ/mol of SO ₃ , how can the equation be rewritten to include the heat term? A. $S_8(s) + 12O_2(g) \rightarrow 85O_3(g) + 3166$ kJ B. $S_8(s) + 12O_2(g) \rightarrow 85O_3(g) + 395.7$ kJ C. $S_8(s) + 12O_2(g) \rightarrow 85O_3(g) + 395.7$ kJ D. $S_8(s) + 12O_2(g) + 3166$ kJ $\rightarrow 85O_3(g)$							
 9.	 Which statement correctly describes the energy changes that take place when a solid changes to a liquid at constant temperature? A. The potential energy increases, and the kinetic energy remains constant. B. The potential energy remains constant, and the kinetic energy increases. C. The potential energy decreases, and the kinetic energy decreases. D. The potential energy increases, and the kinetic energy decreases. 							
 10.	 Why does warm water have a more rapid rate of evaporation than cold water? A. It has a higher viscosity. B. Its molecules have a higher average kinetic energy. C. Its molecules have more attraction for one another. D. More of its molecules have nearly the same kinetic energy. 							
 11.	If the heat of fusion of a substance is 20 kJ/mol, what heat is released when 1.0 mol of liquid at the melting point freezes? A. 10 kJ B. 20 kJ C. 40 kJ D. 80 kJ							
 12.	The amount of 2.00 mol of a solid ionic compound was dissolved in 225 mL of water in an insulated container. Theinitial temperature of the water was 20.0°C and the final temperature of the water was 47.8°C. What is Hsoln?A27.8 kJ/molB26.2 kJ/molC13.1 kJ/molD6.26 kJ/mol							
 13.	 What does it mean if the ∆H value for a chemical reaction is positive? A. kinetic energy is increasing in the system B. potential energy is decreasing in the system C. products have less potential energy than reactants D. reactants have less potential energy than products. 							
 14.	Living plants produce glucose in the process of photosynthesis according to this equation: 6CO₂(g) + 6H₂O(l) + energy → C₀H₁₂O₀(s) + 6O₂(g) Is this reaction endothermic or exothermic, and is the value of △H° positive or negative? A. endothermic, positive B. endothermic, negative C. exothermic, positive D. exothermic, negative							

	15.	In order to produce 972 kJ of heat, how many grams of H_2 must burn?								
		H₂(g) + ½O₂(g) → H₂O(g) + 243 kJ								
		A. 0.250 g B. 4.04 g C. 8.08 g D. 16.0 g								
	16.	Use the equations to answer the question.								
		$2A + B \rightarrow A_2B$ $\Delta H = -217.3 \text{ kJ}$								
		$B + C \rightarrow BC$ $\Delta H = -867.5 \text{ kJ}$								
		What is the value of ΔH for the reaction $2A + BC \rightarrow A_2B + C$?								
		A. +1084.8 kJ B. +650.2 kJ C650.2 kJ D1084.8 kJ								
	17.	Consider this reaction: LiH(s) + 90.5 kJ \rightarrow Li(s) + $\frac{1}{2}$ H ₂ (g)								
		What amount of heat is necessary to decompose 15.9 g of LiH into Li and H ₂ at standard conditions? A. 15.9 kJ B. 90.5 kJ C. 181 kJ D. 1.44 MJ								
	10									
18. During the production of a small amount of material, there is a large decrease in the temperature of t calorimeter. What is the ΔH for the reaction?										
		A. large and positive B. small and negative C. small and positive D. large and negative								
	19.	$C_2H_6(g) \rightarrow C_2H_2(g) + 2H_2(g)$ $\Delta H = +3.2 \times 10^2 \text{ kJ/mol} (C_2H_6)$								
	-2.	What is an alternate way to write this equation?								
		A. $C_2H_6(g) \rightarrow C_2H_2(g) + 2H_2(g) + 3.2 \times 10^2 \text{ kJ}$ C. $C_2H_2(g) + 2H_2(g) + 3.2 \times 10^2 \text{ kJ} \rightarrow C_2H_6(g)$								
		B. $C_2H_6(g) + 3.2 \times 10^2 \text{ kJ} \rightarrow C_2H_2(g) + 2H_2(g)$ D. $C_2H_6(g) - 3.2 \times 10^2 \text{ kJ} \rightarrow C_2H_2(g) + 2H_2(g)$								
	20	What is 4.18 J?								
	20.	A. The heat required to raise the temperature of one gram of water by one Celsius degree.								
		B. The heat required to raise the temperature of one mole of water by one Celsius degree.								
		C. The heat required to raise the temperature of one gram of substance by one Celsius degree.								
		D. The heat required to raise the temperature of one mole of substance by one Celsius degree.								
	21.	What is a positive molar heat of formation?								
		A. The heat absorbed when one mole of compound is formed from its elements.								
		B. The heat released when one mole of compound is formed from its elements.								
		C. The heat absorbed when one mole of elements is formed from the compound.								
		D. The heat released when one mole of elements is formed from the compound.								
	22.	What change is probably happening when energy is added to a substance, but the substance's temperature does not								
		rise? A cost to liquid to cost to colid								
	22	A. gas to liquidB. gas to solidC. liquid to gasD. liquid to solid								
	23.	A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)?								
	23.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. 								
	23.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from A to B as the average kinetic energy of the particles in A increase. 								
	23.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. 								
		 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from A to B as the average kinetic energy of the particles in A increase. C. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. 								
		 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from A to B as the average kinetic energy of the particles in A increase. C. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B increases. What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure? 								
		 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from A to B as the average kinetic energy of the particles in A increase. C. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B increases. What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure? 								
	24.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. C. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure? A. both kinetic and potential energy C. kinetic energy only 								
	24.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyD.potential energy onlyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat								
	24.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyD.potential energy onlyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the								
	24. 25.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyC.kinetic energy onlyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat capacity of the solution?A.4.19 J/g·°CB.B.5.22 J/g·°CC.What happens to the water in a calorimeter when an exothermic reaction occurs in it?								
	24. 25.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyC.kinetic energy onlyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat capacity of the solution?A.4.19 J/g.°CB.B.5.22 J/g.°CC.Mhat happens to the water in a calorimeter when an exothermic reaction occurs in it?A.It absorbs heat, and a drop in temperature is observed.								
	24. 25.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyD.potential energy onlyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific he								
	24. 25.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A ($50^{\circ}C$) is placed in contact with solid B ($80^{\circ}C$)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from $10^{\circ}C$ to $110^{\circ}C$ at standard pressure?A.both kinetic and potential energyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from $18.8^{\circ}C$ to $65.2^{\circ}C$, what is the specific heat capacity of the solution?A.4.19 J/g.°CB.5.22 J/g.°CC.11.2 J/g.°CD.12.0 J/g.°CWhat happens to the water in a calorimeter when an exothermic reaction occurs in it?A.It absorbs heat, and a drop in temperature is observed.B.It absorbs heat, and a drop in temperature is observed.C.It releases heat, and a drop in temperature is observed.								
	24. 25. 26.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from B to A as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increase.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyC.kinetic energy onlyB.B.false characteristic (s) of the solution?A.A.4.19 J/g.°CB.B.5.22 J/g.°CC.What happens to the water in a calorimeter when an exothermic reaction occurs in it?A.A.It absorbs heat, and a drop in temperature is observed.B.C.C.It releases heat, and a drop in temperature is observed.D.D.It releases heat, and a rise in temperature is observed.D.D.It releases heat, and a rise in temperature is observed.D.D.It releases heat, and a rise in temperature is observed.D.D.It releases heat, and a rise in								
	24. 25. 26.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyC.Kinetic energy onlyB.B.intramolecular bonding onlyD.D.A.4.19 J/g.°CB.5.22 J/g.°CC.Mat happens to the water in a calorimeter when an exothermic reaction occurs in it?A.A.It absorbs heat, and a drop in temperature is observed.B.J.It releases heat, and a drop in temperature is observed.D.D.It releases heat, and a rise in temperature is observed.D.D.It releases								
	24. 25. 26.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. C. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B increases. What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure? A. both kinetic and potential energy C. kinetic energy only B. intramolecular bonding only D. potential energy only If 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat capacity of the solution? A. 4.19 J/g.°C B. 5.22 J/g.°C C. 11.2 J/g.°C D. 12.0 J/g.°C What happens to the water in a calorimeter when an exothermic reaction occurs in it? A. It absorbs heat, and a drop in temperature is observed. B. It absorbs heat, and a drop in temperature is observed. D. It releases heat, and a drop in temperature is observed. D. It releases heat, and a rise in temperature is observed. Which is true for an exothermic reaction? A. The ΔH is positive. 								
	24. 25. 26.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from B to A as the average kinetic energy of the particles in A increase. C. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B increases. What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure? A. both kinetic and potential energy C. kinetic energy only B. intramolecular bonding only D. potential energy only If 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat capacity of the solution? A. 4.19 J/g.°C B. 5.22 J/g.°C C. 11.2 J/g.°C D. 12.0 J/g.°C What happens to the water in a calorimeter when an exothermic reaction occurs in it? A. It absorbs heat, and a drop in temperature is observed. B. It absorbs heat, and a drop in temperature is observed. D. It releases heat, and a drop in temperature is observed. D. It releases heat, and a rise in temperature is observed. Which is true for an exothermic reaction? A. The ΔH is positive. B. The products have less potential energy than the reactants. 								
	24. 25. 26.	 A. gas to liquid B. gas to solid C. liquid to gas D. liquid to solid What occurs when solid A (50°C) is placed in contact with solid B (80°C)? A. Heat energy flows from A to B as the average kinetic energy of the particles in A decreases. B. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B decreases. D. Heat energy flows from B to A as the average kinetic energy of the particles in B increases. What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure? A. both kinetic and potential energy C. kinetic energy only B. intramolecular bonding only D. potential energy only If 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat capacity of the solution? A. 4.19 J/g·°C B. 5.22 J/g·°C C. 11.2 J/g·°C D. 12.0 J/g·°C What happens to the water in a calorimeter when an exothermic reaction occurs in it? A. It absorbs heat, and a drop in temperature is observed. D. It releases heat, and a drop in temperature is observed. D. It releases heat, and a rise in temperature is observed. D. It releases heat, and a rise in temperature is observed. Which is true for an exothermic reaction? A. The ΔH is positive. B. The products have less potential energy than the reactants. C. The reactants have more kinetic energy than the products. 								
	24. 25. 26. 27.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.A. 19 J/g °CB.G. 12 J/g °CC.It absorbs heat, and a drop in temperature is observed.D.								
	24. 25. 26. 27.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from B to A as the average kinetic energy of the particles in A decreases.C.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B decreases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Intramolecular bonding onlyD.B.intramolecular bonding onlyD.D.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature of 170.0 g of a liquid from 18.8°C to 65.2°C, what is the specific heat capacity of the solution?A.4.19 J/g.°CB.5.22 J/g.°CC.A.11.2 J/g.°C<								
	24. 25. 26. 27.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A ($50^{\circ}C$) is placed in contact with solid B ($80^{\circ}C$)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy onlyA. both kinetic and potential energyC.Kinetic energy onlyb.B.intramolecular bonding onlyD.D.potential energy onlyB.intramolecular bonding onlyD.A.4.19 J/g.°CB.A.5.22 J/g.°CC.A.112 J/g.°CD.B.12.0 J/g.°CC.It absorbs heat, and a drop in temperature is observed.C.It releases heat, and a drop in temperature is observed.D.It releases heat, and a drop in temperature is observed.D.It releases heat, and a rise in temperature is observed.D.It releases heat, and a rise in temperature is observed.D.It releases heat, and a rise in temperature								
	24. 25. 26. 27.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A ($50^{\circ}C$) is placed in contact with solid B ($80^{\circ}C$)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy onlyB.intramolecular bonding onlyD.potential energy onlyIf 41.2 kJ of energy is needed to raise the temperature is observed.D.12.0 J/g.°CA.4.19 J/g.°CB.								
	24. 25. 26. 27.	A.gas to liquidB.gas to solidC.liquid to gasD.liquid to solidWhat occurs when solid A (50°C) is placed in contact with solid B (80°C)?A.Heat energy flows from A to B as the average kinetic energy of the particles in A decreases.B.Heat energy flows from A to B as the average kinetic energy of the particles in A increase.C.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.D.Heat energy flows from B to A as the average kinetic energy of the particles in B increases.What characteristic(s) of water change(s) when its temperature is raised from 10°C to 110°C at standard pressure?A.both kinetic and potential energyC.kinetic energy onlyB.intramolecular bonding onlyD.potential energy onlyB.intramolecular bonding onlyA. (19 J/g°C)B.A. (19 J/g°C)B.B.5.22 J/g°CC.11.2 J/g°CD.12.0 J/g°CMat happens to the water in a calorimeter when an exothermic reaction occurs in it?A.11 absorbs heat, and a drop in temperature is observed.D.11 releases heat, and a drop in temperature is observed.D.11 releases heat, and a drop in temperature is observed.D.11 releases heat, and a rise in temperature is observed.D.11 releases heat, and a rise in temperature is observed.D.11 releases heat, and a rise in temperature is obser								

 29.	Use these thermochemical equations to answer the question. $\begin{array}{c} C_2H_4(g) + 3O_2(g) \not \rightarrow 2CO_2(g) + 2H_2O(g) \\ C_4H_8(g) + 6O_2(g) \not \rightarrow 4CO_2(g) + 4H_2O(g) \\ \end{array}$ What is the heat of the reaction, $2C_2H_4(g) \not \rightarrow C_4H_8(g)$? A5518.5 kJ B3986.5 kJ C1288.3 kJ D121.9 kJ							
 30.	 What can be concluded from this thermochemical equation? NaOH(s) → Na⁺(aq) + OH⁻(aq) ΔH = -45 kJ/mol A. Sodium and hydroxide ions have more potential energy than solid sodium hydroxide. B. Solid sodium hydroxide has less potential energy than aqueous sodium hydroxide. C. The crystallization of sodium hydroxide is an exothermic process. D. The temperature of the water would rise as solid sodium hydroxide dissolves. 							
 31.	What is one result of a solid-liquid phase change?A. A change in a substance's chemical bonding.C. A change in a substance's mass.B. A change in a substance's kinetic energy.D. A change in a substance's potential energy.							
 32.	A sample of aluminum absorbed 9.86 J of heat and its temperature increased from 23.2°C to 30.5°C. What is themass of the aluminum?A. 1.5 gB. 8.1 gC. 65 gD. 72 g							
 33.	At standard pressure, which is an example of a change in kinetic energy only ? A. carbon dioxide cooling from -80°C to -100°C B. molten aluminum solidifying at 660°C C. steam condensing at 100°C D. water decomposing above 1 x 10 ⁷ °C							
 34.	In order for 10.0 g of NH4Cl to dissociate in water, 2.77 kJ of energy is required. What is the molar enthalpy of solution for NH4Cl? A. 0.277 kJ/mol B. 2.77 kJ/mol C. 14.8 kJ/mol D. 19.8 kJ/mol							
 35.	 Which statement is true? A. An endothermic reaction is characterized by a negative value of △H. B. An exothermic reaction transfers heat to the surroundings. C. Heat is evolved when an endothermic reaction occurs. D. The reaction vessel cools when an exothermic reaction occurs. 							
 36.	Living plants produce glucose in the process of photosynthesis according to this equation: 6CO₂(g) + 6H₂O(l) + energy → C₀H₁₂O₀(s) + 6O₂(g) Is this reaction endothermic or exothermic, and is the value of △H° positive or negative? A. endothermic, positive B. endothermic, negative C. exothermic, positive D. exothermic, negative							
 37.	Using the thermochemical equation: $2AI(s) + \frac{3}{2}O_2(g) \rightarrow AI_2O_3(s)$ $\Delta H = -1676 \text{ kJ}$							
	What is ∆H for the following reaction: 2Al₂O₃(s) → 4Al + 3O₂(g) ? A3352 kJ B838 kJ C. +838 kJ D. +3352 kJ							
 38.	What is the value of ΔH for the reaction, $S(s) \neq S(g)$? $S(s) + O_2(g) \neq SO_2(g)$ $\Delta H = -395 \text{ kJ}$ $S(g) + O_2(g) \neq SO_2(g)$ $\Delta H = -618 \text{ kJ}$ A1013 kJ B223 kJ C. + 223 kJ D. +1013 kJ							
 39.	What quantity of heat is evolved when 5.55 mol H ₂ O(l) is formed from the combustion of H ₂ (g) and O ₂ (g)? H ₂ (g) + $\frac{1}{2}O_2(g) \rightarrow$ H ₂ O(l) Δ H = -285.8 kJ							
	A. 51.44 kJ B. 285.8 kJ C. 1586 kJ D. 2297 kJ							
 40.	Which processes are exothermic? 1. boiling water 2. freezing water 3. condensation of steam 4. melting ice A. 1 and 3 B. 1 and 4 C. 2 and 3 D. 2 and 4							
 41.	Which is correct for the process $H_2O(g) \rightarrow H_2O(I)$?A. ΔH is negative and the process is endothermic.B. ΔH is negative and the process is exothermic.C. ΔH is positive and the process is exothermic.D. ΔH is positive and the process is exothermic.							
 42.	If 1.0 mol of ammonia reacts to form nitrogen and hydrogen, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ $\Delta H = -92 \text{ kJ}$ what heat energy is associated with the reaction? $\Delta H = -92 \text{ kJ}$ A. 46 kJ and the reaction is endothermicC.92 kJ and the reaction is endothermicB. 46 kJ and the reaction is exothermicD.92 kJ and the reaction is exothermic							

43. Ho	w might the reaction	n between H ₂ ((a) and F	(a) in a	thermally	insulated ve	essel be described?
--------	----------------------	----------------------------	-----------	----------	-----------	--------------	---------------------

$$H_2(q) + F_2(q) \rightarrow 2HF(q) \qquad \Delta H = -271$$

- A. It is endothermic, and the temperature of the reaction system would fall.
- It is endothermic, and the temperature of the reaction system would rise. Β.
- It is exothermic, and the temperature of the reaction system would fall. C.
- D. It is exothermic, and the temperature of the reaction system would rise.

```
44. When graphite and diamond burn, the reactions can be represented by the thermochemical equations:
```

$$C(\text{graphite}) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H = -393 \text{ k}.$$

 $C(\text{diamond}) + O_2(g) \rightarrow CO_2(g)$ ∆H = -395 kJ If 1.0 mol of graphite is converted into 1.0 mol of diamond under the same conditions, what is the heat energy change?

kJ

- A. 2 kJ of heat are absorbed from the surroundings.
- B. 2 kJ of heat are given off to the surroundings.
- 788 kJ of heat are absorbed from the surroundings. C.
- D. 788 kJ of heat are given off to the surroundings. 45. Use the thermochemical equations: $Fe_2O_3(s) + 3CO(q) \rightarrow 2Fe(s) + 3CO_2(q)$ ∆H = -26.8 kJ $FeO(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$ ∆H = -16.5 kJ to calculate ΔH for this reaction: $Fe_2O_3(s) + CO(g) \rightarrow 2FeO(s) + CO_2(g)$ A. -59.8 kJ B. -43.3 kJ C. -10.3 kJ D. +6.2 kJ 46. Which one of the following processes is endothermic? A. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O(g)$ C. $H_2O(g) \rightarrow H_2O(I)$ B. $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ D. $H_2O(s) \rightarrow H_2O(l)$ 47. Which statement is true for the reaction between $HNO_3(aq)$ and $N_2H_4(I)$? $4HNO_3(aq) + 5N_2H_4(I) \rightarrow 7N_2(g) + 12H_2O(g)$ ∆H = -24462.0 kJ 205.2 kJ are absorbed per mole of $H_2O(g)$ used. C. 492.4 kJ are released per mole of $N_2H_4(I)$ formed. Α. D. 615.5 kJ are released per mole of HNO3(aq) used. Β. 351.7 kJ are absorbed per mole of $N_2(g)$ formed. 48. Given the two reactions below, what is the ΔH for the reaction, $IF_5(q) \rightarrow IF_3(q) + F_2(q)$? $IF(g) + F_2(g) \rightarrow IF_3(g)$ ∆H = -390 kJ $IF(g) + 2F_2(g) \rightarrow IF_5(g) \Delta H = -745 \text{ kJ}$ A. -1135 kJ 35 kJ C. 355 kJ D. 1135 kJ Β. 49. For which of the following equations is the enthalpy change equal to ΔH^{o}_{f} for the product? A. $2Ca(s) + O_2(g) \rightarrow 2CaO(s)$ C. $2C(s) + O_2(g) \rightarrow 2CO(g)$ B. $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$ D. $3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$ 50. Given the following bond energies: C-C 349 kJ/mol C-H 416 kJ/mol C-O 361 kJ/mol O-H 466 kJ/mol What is the bonding energy for ethanol, $C_2H_5OH(g)$? нн 2C(g) + 6H(g) +O(g) → H-C-C-O-H HH B. $2.01 \times 10^3 \text{ kJ/mol}$ A. $1.59 \times 10^3 \text{ kJ/mol}$ C. $2.84 \times 10^3 \text{ kJ/mol}$ D. 3.26 x 10³ kJ/mol 51. Calculate the ΔH for the following reaction using the bond energies given below. $H_2(g) + I_2(g) \rightarrow 2HI(g)$ Bond Energies: H-H = 436 kJ/mol, I-I = 151 kJ/mol, H-I = 297 kJ/mol A. +290 kJ B. -290 kJ C. +7 kJ D. -7 kJ 52. Which statement correctly describes an endothermic chemical reaction? A. The products have higher potential energy than the reactants, and ΔH is negative. The products have higher potential energy than the reactants, and the ΔH is positive. Β. C. The products have lower potential energy than the reactants, and the ΔH is negative. D. The products have lower potential energy than the reactants, and the Δ H is positive. 53. The following decomposition reaction may occur in an air bag. $2NaN_3(s) \rightarrow 3N_2(q) + 2Na(s) \Delta H = -43.5 \text{ kJ}$ What is the heat of formation, ΔH_f , for NaN₃? -43.5 kJ B. -21.8 kJ C. 21.8 kJ D. 43.5 kJ Α. 54. A small sample released 2.0 x 10¹⁰ kJ of energy while undergoing a change. What type of change most likely occurred? A. chemical B. molecular C. nuclear D. physical