Chemistry - Acid-Base Multiple Choice Questions

1. Which of these substances is an Arrhenius acid?
A. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
B. $\mathrm{CH}_{4}(\mathrm{~g})$
C. $\mathrm{HBr}(\mathrm{g})$
D. $\mathrm{KOH}(\mathrm{s})$
2. Which statement is true?
A. $\mathrm{BF}_{3}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{BF}_{3} \mathrm{NH}_{3}(\mathrm{~s})$ is an example of a Bronsted-Lowry reaction.
B. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is an example of a Brønsted-Lowry reaction.
C. The Bronsted-Lowry Theory states that an acid and a base react through electron transfer.
D. The hydroxide ion is normally a Bronsted-Lowry acid.
3. If equal volumes of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ solution and $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ solution are compared, which would be true of the $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$?
A. It would have a higher hydronium ion concentration.
B. It would have a higher pH .
C. It would produce a larger volume of hydrogen gas when reacted with zinc.
D. It would require a greater volume of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ solution for neutralization.
4. Water can act as either an acid or a base. Which equation represents water reacting as an acid?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
B. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HCl}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}(\mathrm{aq})$
D. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{C}(\mathrm{s}) \leftrightarrows \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
5. $\quad 11.2 \mathrm{~g}$ of potassium hydroxide (KOH) is dissolved in sufficient water to make 1 L of solution. What is the concentration of KOH in the solution?
A. $\quad 0.01 \mathrm{~mol} / \mathrm{L}$
B $\quad 0.02 \mathrm{~mol} / \mathrm{L}$
C. $\quad 0.1 \mathrm{~mol} / \mathrm{L}$
D. $\quad 0.2 \mathrm{~mol} / \mathrm{L}$
6. If 0.012 mol of solid sodium hydroxide is added to 1 L of $0.010 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid solution, what is the pH of the solution?
A. 2.7
B. 3.3
C. $\quad 11.3$
D. 13.1
7. What is the pH of a $0.015 \mathrm{~mol} / \mathrm{L}$ aqueous solution of HCl (hydrochloric acid)?
A. 0.015
B. 0.085
C. 1.82
D. 2.18
8. A student recorded observations regarding colours of various indicators in an unknown acid solution:
I. The solution turns red with the addition of methyl red.
II. The solution turns blue with the addition of indigo carmine.
III. The solution turns blue with the addition of bromothymol blue.
IV. The solution turns blue litmus paper red.

Which observation is inconsistent with the other observations.
A. Observation I
B. Observation II
C. Observation III
D. Observation IV
9. If 46.25 mL of $0.861 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is required to titrate a $0.933 \mathrm{M} \mathrm{LiOH}(\mathrm{aq})$ solution, what is the volume of the $\mathrm{LiOH}(\mathrm{aq})$
A. $\quad 0.0234 \mathrm{~mL}$
B. $\quad 37.15 \mathrm{~mL}$
C. $\quad 42.68 \mathrm{~mL}$
D. $\quad 50.12 \mathrm{~mL}$
10. What is one property of acids?
A. Acidic solutions feel slippery.
C. Acids taste bitter.
B. Acids react with certain metals to generate hydrogen.
D. Acids turn red litmus paper blue.
11. According to Arrhenius, what does the reaction $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$ represent?
A. dissociation of an acid.
C. formation of an acidic solution
B. dissociation of a base.
D. formation of a neutral solution
12. According to the Bronsted-Lowry theory, what is a base?
A. a hydrogen ion (proton) acceptor
B. an electrolyte
C. a nonelectrolyte
D. a substance that increases the hydrogen (hydronium) ion concentration
13. Which equation shows an acid-base neutralization reaction?
A. $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})$
B. $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
D. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
14. What are the Bronsted-Lowry acids in this reaction?

$$
\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}-\mathrm{aq}\right)+\mathrm{OH}^{-}(\mathrm{aq})
$$

A. $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{B} . \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
D. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
15. What does the strength of an acid depend upon?
A. concentration of the acid
C. time it takes the acid to neutralize a base
B. extent to which the acid ionizes
D. volume of the acid
\qquad 16. What is the hydrogen ion concentration in lemon juice that has a pH of 3.0 ?
A. $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
B. $1 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$
C. $1 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$
D. $3 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
17. Which describes tap water that has a pH of 8?
A. acidic with $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{~mol} / \mathrm{L}$
C. basic with $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{~mol} / \mathrm{L}$
B. acidic with $\left[\mathrm{OH}^{-}\right]=10^{-8} \mathrm{~mol} / \mathrm{L}$
D. basic with $\left[\mathrm{OH}^{-}\right]=10^{-8} \mathrm{~mol} / \mathrm{L}$
\qquad 18. What is the pH of a $0.001 \mathrm{~mol} / \mathrm{L}$ aqueous solution of NaOH ?
A. 3
B. 4
C. 11
D. 14
19. What does a K_{a} of 2.8×10^{-11} imply about an acid?
A. It is a strong acid.
C. It is highly ionized.
B. It is extremely soluble.
D. It is very slightly ionized.
\qquad 20. In a titration experiment, 18.62 mL of $0.0975 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$ acid was needed to completely neutralize 20.0 mL of $\mathrm{KOH}(\mathrm{aq})$. What was the concentration of the $\mathrm{KOH}(\mathrm{aq})$?
A. $\quad 0.00191 \mathrm{~mol} / \mathrm{L}$
B. $0.00382 \mathrm{~mol} / \mathrm{L}$
C. $\quad 0.0908 \mathrm{~mol} / \mathrm{L}$
D. $\quad 0.105 \mathrm{~mol} / \mathrm{L}$
21. Which is not and operational (i.e., empirical) definition of a base?
A. decreases the hydrogen ion concentration
C. has a bitter taste
B. feels slippery
D. turns red litmus paper blue.
22. According to the Arrhenius theory, what causes the characteristic properties of bases?
A. aqueous hydrogen ions
C. lone pairs of electrons in the base molecule
B. aqueous hydroxide ions
D. proton donors in the base molecule
\qquad 23. According to the Bronsted-Lowry theory, what is a base?
A. electron acceptor
B. electron donor
C. hydrogen ion acceptor
D. hydrogen ion donor
24. What are the Bronsted-Lowry bases in the following equation?

$$
\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
B. $\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
C. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{D}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
25. How would a $0.001 \mathrm{~mol} / \mathrm{L}$ solution of an acid that ionizes completely in solution be classified?
A. concentrated and strong
C. dilute and strong
B. concentrated and weak
D. dilute and weak
\qquad 26. According to the Bronsted-Lowry concept, how would a substance that can act as an acid in some reactions and as a base in other reactions be classified?
A. acid-base pair
B. amphoteric
C. conjugate
D. neutral
27. A drop in pH level of 2 in an aquarium would mean that the acidity, as measured by $\left[\mathrm{H}^{+}\right]$, had changed by what factor?
A. 2
B. 10
C. 100
D. 1000
28. A pH meter used to test a freshly opened carbonated soft drink gives a reading of 3.14. What is the $\left[H^{+}\right]$?
A. $7.2 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
B. $3.1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
C. $7.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
D. $3.1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
29. Which numerical value of K_{a} indicates the strongest acid?
A. 1×10^{-7}
B. 1.7×10^{-4}
C. 6.7×10^{-4}
D. 7.1×10^{-3}
30. For complete neutralization, 15.0 mL of $0.35 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ solution was required to react with 0.425 g of an acid. What is the possible identity of the acid?
A. $\operatorname{HBr}(a q)$
B. $\mathrm{HCl}(\mathrm{aq})$
C. $\mathrm{HNO}_{3}(\mathrm{aq})$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
31. When a weak base such as $\mathrm{NH}_{3}(\mathrm{aq})$ is titrated with $\mathrm{HCl}(\mathrm{aq})$, what is the pH at the equivalence point?
A. equal to 0
B. equal to 7
C. greater than 7
D. less than 7
32. A student found that orange IV indicator turned yellow and methyl orange turned red in samples of an unknown solution. What is the pH for the unknown solution likely to be?
A. 1.2
B. 3.0
C. 5.3
D. 9.0

33 Which substance can be called an Arrhenius base?
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. HBr
C. KOH
D. NaCl
34. What is the pH of a solution if the $\mathrm{OH}^{-}(\mathrm{aq})$ ion concentration is $2.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$?
A. 2.6
B. 8.6
C. 9.8
D. 11.4
35. According to the Arrhenius definition of acids and bases, what does an acid do when it is dissolved in water?
A. increases the hydrogen ion concentration
C. turns blue litmus paper red
B. increases the hydroxide ion concentration
D. turns red litmus paper blue
36. Why is acetic acid classified as a weak acid?
A. It does not ionize in water.
C. It gives vinegar a sour taste.
B. It does not neutralize bases.
D. It ionizes slightly in water.
\qquad 37. In the Bronsted-Lowry theory, what must a base do?
A. accept a proton during a collision with an acid
B. dissociate in aqueous solution
C. raise the hydrogen ion concentration of an aqueous solution above $1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
D. taste bitter and feel slippery
38. What are the two Bronsted-Lowry acids in the reaction:

$$
\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

A. HNO_{2} and $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{H}_{2} \mathrm{O}$ and HNO_{2}
C. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{2} \mathrm{O}$ and NO_{2}^{-}
39. If aluminum hydroxide is an amphoteric compound, what can be said about it?
A. It can act as a base in the presence of strong bases.
C. It can act as either an acid or a base.
B. It can act as a base in the presence of weak bases.
D. It is a strong base,
40. What happens to the concentration of hydroxide ion if the pH decreases from 11.5 to 8.5 during a reaction?
A. It decreases by a factor of 3 .
C. It increases by a factor of 3 .
B. It decreases by a factor of 1000 .
D. It increases by a factor of 1000.
41. What is the hydroxide ion concentration in an aqueous solution in which the hydronium ion concentration is $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$?
A. $1 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$
B. $1 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$
C. $1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
D. $1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
42. In a titration experiment, 20.0 mL of HBr was needed to completely neutralize 40.0 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{KOH}$. What was the concentration of the acid?
A. $0.0080 \mathrm{~mol} / \mathrm{L}$
B. $\quad 0.080 \mathrm{~mol} / \mathrm{L}$
C. $\quad 0.20 \mathrm{~mol} / \mathrm{L}$
D. $\quad 2.0 \mathrm{~mol} / \mathrm{L}$
43. An unidentified aqueous solution is a strong electrolyte that causes blue litmus to turn red. Which of the following could be the solution?
A. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})$
B. $\mathrm{HBr}(\mathrm{aq})$
c. $\mathrm{KOH}(\mathrm{aq})$
D. $\mathrm{NaCl}(\mathrm{aq})$
44. Which of the four statements are true?

1. Acids increase the concentration of hydrogen ions in solution.
2. Acids increase the concentration of hydroxide ions in solution.
3. Acids increase the pH of a solution.
4. Acids react with magnesium to produce hydrogen gas.
A. 1 and 4
B. 2 and 4
C. 1,2, and 4
D. 2,3 , and 4
5. Which equation represents the reaction of $\mathrm{HSO}_{3}(\mathrm{aq})$ as an acid?
A. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
B. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
C. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
D. $\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrows \mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})$
6. Which equation shows an acid-base neutralization reaction?
A. $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})$
B. $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
D. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
7. Which phrase describes a weak aqueous acid?
A. highly dissociated
B. partially ionized
C. unreactive with zinc
D. very dilute
8. Which property is characteristic of solutions of both strong acids and strong bases?
A. are good conductors of electricity
C. react with zinc to produce hydrogen gas
B. have a pH of 7
D. turn red litmus blue
9. If egg whites have a hydroxide ion concentration of $3.3 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$, what is the hydrogen ion concentration?
A. $3.3 \times 10^{7} \mathrm{~mol} / \mathrm{L}$
B. $1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
C. $\quad 6.7 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
D. $3.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
10. A weak acid, $H A$, ionizes according to the equation: $H A(a q) \leftrightarrows H^{+}(a q)+A^{-}(a q)$

If a $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HA(aq)} \mathrm{solution} \mathrm{has}\left[\mathrm{H}^{+}\right]=0.0010 \mathrm{~mol} / \mathrm{L}$, what is the numerical value of Ka ?
A. $1.0 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
B. $1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
C. $1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
D. $1.0 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
51. What is the concentration of $\mathrm{NaOH}(\mathrm{aq})$ solution, if 30.0 mL of $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCN}(\mathrm{aq})$ neutralizes 25.0 mL of the $\mathrm{NaOH}(\mathrm{aq})$ solution?
A. $0.25 \mathrm{~mol} / \mathrm{L}$
B. $0.83 \mathrm{~mol} / \mathrm{L}$
C. $\quad 1.0 \mathrm{~mol} / \mathrm{L}$
D. $\quad 1.2 \mathrm{~mol} / \mathrm{L}$
52. The Ka values of some monoprotic acids are shown in the table:

Acid	K_{a} value
Acetic acid	$1.8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
Benzoic acid	$6.4 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
Formic acid	$1.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
Hydrocyanic acid	$6.2 \times 10^{-10} \mathrm{~mol} / \mathrm{L}$

A $0.10 \mathrm{~mol} / \mathrm{L}$ solution of which acid would contain the most ions?
A. acetic acid
B. benzoic acid
C. formic acid
D. hydrocyanic acid
\qquad 53. What is the pH of the equivalence point of a titration of $\mathrm{HCl}(\mathrm{aq})$ with $\mathrm{NaOH}(\mathrm{aq})$?
A. equals 7
B. greater than 7.0
c. less than 7
D. unknown
54. Which statements are characteristic of acids?

1. They turn blue litmus red. 3. They taste sour.
2. They react with bases to produce a salt and hydrogen. 4. They neutralize bases.
A. 1 and 4
B. 1,3 , and 4
C. 2 and 4
D. 2,3 , and 4
3. Which are the Bronsted-Lowry bases in this reaction?
$\mathrm{HCOO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{HCOOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
A. HCOO and HCOOH
B. HCOO^{-}and OH^{-}
c. $\mathrm{H}_{2} \mathrm{O}$ and HCOOH
D. $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
4. What is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{3}-(\mathrm{aq})$
A. $\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
C. $\mathrm{HPO}_{3}{ }^{2-}(\mathrm{aq})$
D. $\mathrm{PO}_{3}{ }^{2-}(\mathrm{aq})$
5. Which acts as an amphoteric species in aqueous solution?
A. HCO_{3}^{-}
B. HNO_{3}
C. $\mathrm{PO}_{4}{ }^{3-}$
D. $\mathrm{SO}_{4}{ }^{2-}$
6. If a $0.1 \mathrm{~mol} / \mathrm{L}$ solution has a pH of 4 , what is the solution likely to be?
A. a strong acid
B. a strong base
C. a weak acid
D. a weak base
7. Which solution would have the lowest pH ?
A. $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
B. $\quad 0.1 \mathrm{~mol} / \mathrm{LHCl}(\mathrm{aq})$
C. $\quad 0.1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$
D. $\quad 0.1 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{3}(\mathrm{aq})$
8. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of seawater that has a pH of 8.10?
A. $7.9 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$
B. $1.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
C. $1.3 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
D. $8.0 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
9. A solution of milk of magnesia, $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})$, has a pH of 10.40 . What is its $\left[\mathrm{OH}^{-}\right]$?
A. $4.0 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$
B. $1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
C. $1.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
D. $2.5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
10. Which of the following solutions has the greatest hydroxide ion concentration?
A. a buffer solution with $\mathrm{pH}=5$
C. $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$
B. $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{CH}_{3} \mathrm{COOH}$
D. pure water
11. What is the main reaction that occurs when hydrochloric acid is added to the $\mathrm{Na}_{c} \mathrm{H}_{3} \mathrm{COO}-\mathrm{CH}_{3} \mathrm{COOH}$ buffer?
A. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{HCl}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}$
B. $\mathrm{HCl}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Cl}^{-}(\mathrm{aq})$
C. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
D. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
12. Why does the addition of a small volume of dilute $\mathrm{HCl}(\mathrm{aq})$ to a mixture of aqueous solutions of $\mathrm{CH}_{3} \mathrm{COOH}^{2}$ and $\mathrm{NaCH}_{3} \mathrm{COO}$ have little effect on the pH ?
A. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ions in the buffer solution inhibit the ionization of the $\mathrm{HCl}(\mathrm{aq})$
B. The $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ ions in the buffer solution react with the $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ions from the $\mathrm{HCl}(\mathrm{aq})$
C. The quantity of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ions produced by the $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ approximately equals the $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ions produced by the $\mathrm{HCl}(\mathrm{aq})$
D. The volume of the solution is not increased to a significant extent.
13. Which of the following is amphiprotic (amphoteric)?
A. Cl^{-}
B. HCO_{3}^{-}
C. HCl
D. $\mathrm{NH}_{4}{ }^{+}$
14. What is the pH of a solution that contains 0.25 mol of HBr in 750 mL of solution?
A. 0.33
B. 0.48
C. $\quad 0.60$
D. 3.5
15. A solution of sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$, contains the indicator bromothymol blue. If hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, is added drop by drop to the $\mathrm{NaOH}(\mathrm{aq})$, what will be the order of the color changes?
A. blue to green to yellow B. blue to yellow to green
C. green to blue to yellow D. yellow to green to blue
16. The juice of the lime has a hydronium ion concentration which is about 100000 times greater than that of pure water. What is the approximate pH of lime juice?
A. 1.0
B. 2.1
C. 3.6
D. 5.2
