Chemistry — Acid-Base Multiple Choice Questions

		•		•			
	1.	Which of these substances is a A. $C_2H_6(g)$ B.	n Arrhenius acid? CH₄(g)	С.	HBr(g)	D.	KOH(s)
	2.	Which statement is true? A. $BF_3(g) + NH_3(g) \rightarrow BF_3NH_3(s)$ is an example of a Brønsted-Lowry reaction. B. $H_3O^{+}(aq) + OH^{-}(aq) \rightarrow 2H_2O(I)$ is an example of a Brønsted-Lowry reaction. C. The Brønsted-Lowry Theory states that an acid and a base react through electron transfer. D. The hydroxide ion is normally a Brønsted-Lowry acid.					
	3.	 If equal volumes of 0.10 mol/L HCl(aq) solution and 0.10 mol/L CH₃COOH(aq) solution are compared, which would be true of the CH₃COOH(aq)? A. It would have a higher hydronium ion concentration. B. It would have a higher pH. C. It would produce a larger volume of hydrogen gas when reacted with zinc. D. It would require a greater volume of 0.10 mol/L NaOH(aq) solution for neutralization. 					
	4.	Water can act as either an act A. $H_2O(I) + NH_3(g) = OH^2(G)$ B. $H_2O(I) = H_2(g) + \frac{1}{2}O_2(g)$	l or a base. Which equation re aq) + NH4*(aq)	epres C. D.	ents water reacting as a H₂O(I) + HCl(aq) ≒ H₂O(I) + C(s) ≒ CO(a	in aci H₃O⁺ g) +	id? + Cl⁻(aq) H₂(g)
	5.	11.2 g of potassium hydroxide (of KOH in the solution? A. 0.01 mol/L B	(KOH) is dissolved in sufficier 0.02 mol/L	nt wa C.	ter to make 1 L of solut 0.1 mol/L	ion. D.	What is the concentration 0.2 mol/L
<u></u>	6.	If 0.012 mol of solid sodium hy solution? A. 2.7 B.	rdroxide is added to 1 L of 0. 3.3	010 r C.	nol/L hydrochloric acid : 11.3	solut D.	ion, what is the pH of the 13.1
	7.	What is the pH of a 0.015 mol/ A. 0.015 B.	L aqueous solution of HCl (hyc 0.085	droch C.	loric acid)? 1.82	D.	2.18
	8.	A student recorded observation I. The solution II. The solution III. The solution IV. The solution Which observation is inconsiste A. Observation I B.	ns regarding colours of variou turns red with the addition of turns blue with the addition turns blue with the addition turns blue litmus paper red. ant with the other observation Observation II	s indi of me of ind of br ns. C.	cators in an unknown aci thyl red. digo carmine. omothymol blue. Observation III	d sol D.	ution: Observation IV
	9.	If 46.25 mL of 0.861 M $CH_{3}C$ LiOH(aq)	00H(aq) is required to titra	te a (0.933 M LiOH(aq) solut	ion, i	what is the volume of the
	10.	 What is one property of acids? A. Acidic solutions feel slippe B. Acids react with certain m 	ery.	с. С. D.	Acids taste bitter. Acids turn red litmus p	D. Daper	blue.
	11.	According to Arrhenius, what d A. dissociation of an acid. B. dissociation of a base.	oes the reaction Ba(OH)2(s)	→ Ba C. D.	²⁺ (aq) + 20H ⁻ (aq) repre formation of an acidic formation of a neutral	esent solut solut	t? rion tion
	12.	 According to the Brønsted-Low A. a hydrogen ion (proton) acc B. an electrolyte C. a nonelectrolyte D. a substance that increases 	ry theory, what is a base? ceptor s the hydrogen (hydronium) ion	n con	centration		
	13.	Which equation shows an acid-t A. $Zn(s) + 2HCl(aq) \rightarrow H_2(g) +$ B. $2NaOH(aq) + CaCl_2(aq) \rightarrow 3$	ase neutralization reaction? ZnCl2(aq) 2NaCl(aq) + Ca(OH)2(s)	C. D.	H₂CO₃(aq) → CO₂(aq) + NaOH(aq) + HCl(aq) →	∙ H₂C NaC	D(I) I(aq) + H2O(I)
	14.	What are the Brønsted-Lowry a . HPO ₄ ²⁻ (aq) and OH ⁻ (aq) B.	acids in this reaction? H₂O(I) + HPO4 ²⁻ (aq) ≒ H₂PO4 H₂O(I) and HPO4 ²⁻ (aq)	i⁻(aq) C.	+ OH ⁻ (aq) H2O(I) and H2PO4 ⁻ (aq)	D.	H₂O(I) and OH⁻(aq)

 15.	What does the strength of an acid depend upon? A. concentration of the acid B. extent to which the acid ionizes	C. D.	time it takes the acid volume of the acid	to ne	utral	ize a base
 16.	What is the hydrogen ion concentration in lemon juice that ha A. 1×10^{-3} mol/L B. 1×10^{-11} mol/L	s a p C.	0H of 3.0? 1 x 10 ⁻¹⁴ mol/L	D.	3 x	10 ⁻¹ mol/L
 17.	Which describes tap water that has a pH of 8? A. acidic with [H ⁺] = 10 ⁻⁸ mol/L B. acidic with [OH ⁻] = 10 ⁻⁸ mol/L	C. D.	basic with [H ⁺] = 10 ⁻⁸ n basic with [OH ⁻] = 10 ⁻⁸	nol/L mol/	L	
 18.	What is the pH of a 0.001 mol/L aqueous solution of NaOH? A. 3 B. 4	С.	11	D.	14	
 19.	What does a K_a of 2.8 × 10 ⁻¹¹ imply about an acid? A. It is a strong acid. B. It is extremely soluble.	C. D.	It is highly ionized. It is very slightly ioniz	ed.		
 20.	In a titration experiment, 18.62 mL of 0.0975 mol/L HNO $_3$ aci What was the concentration of the KOH(aq)? A. 0.001 91 mol/L B. 0.00382 mol/L	id wa C.	as needed to completely 0.0908 mol/L	neuti D.	ralize 0.10	e 20.0 mL of KOH(aq). 05 mol/L
 21.	Which is <i>not</i> and operational (i.e., empirical) definition of a ba A. decreases the hydrogen ion concentration B. feels slippery	se? C. D.	has a bitter taste turns red litmus paper	blue.		
 22.	According to the Arrhenius theory, what causes the characte A. aqueous hydrogen ions B. aqueous hydroxide ions	risti C. D.	ic properties of bases? lone pairs of electrons proton donors in the ba	in th ase rr	e bas Noleci	se molecule Ile
 23.	According to the Brønsted-Lowry theory, what is a base? A. electron acceptor B. electron donor	С.	hydrogen ion acceptor	D.	hyd	rogen ion donor
 24.	What are the Brønsted-Lowry bases in the following equation: $HSO_3^{-}(aq) + H_2O(I) \leftrightarrows H_2SO_3(aq)$ A. $H_2O(I)$ and $H_2SO_3(aq)$ B. $HSO_3^{-}(aq)$ and $H_2O(I)$? 1q) + C.	· OH ⁻ (aq) HSO3 ⁻ (aq) and OH ⁻ (aq)	D.	H₂S	60₃(aq) and OH⁻(aq)
 25.	How would a 0.001 mol/L solution of an acid that ionizes compl A. concentrated and strong B. concentrated and weak	letel C. D.	ly in solution be classifie dilute and strong dilute and weak	d?		
 26.	According to the Brønsted-Lowry concept, how would a substa in other reactions be classified? A. acid-base pair B. amphoteric	ance C.	that can act as an acid conjugate	in soi D.	ne re neu	eactions and as a base tral
 27.	A drop in pH level of 2 in an aquarium would mean that the aci A. 2 B. 10	dity <i>C</i> .	, as measured by [H*], ha 100	ad ch D.	ange 100	d by what factor? O
 28.	A pH meter used to test a freshly opened carbonated soft dr A. 7.2×10^{-2} mol/L B. 3.1×10^{-3} mol/L	ink <u>c</u>	gives a reading of 3.14. 7.2 x 10 ⁻⁴ mol/L	What	is tł D.	ne [H⁺]? 3.1 x 10 ⁻⁵ mol/L
 29.	Which numerical value of K_a indicates the <i>strongest</i> acid? A. 1×10^{-7} B. 1.7×10^{-4}	С.	6.7 × 10 ⁻⁴	D.	7.1	× 10 ⁻³
 30.	For complete neutralization, 15.0 mL of 0.35 mol/L NaOH(ad What is the possible identity of the acid? A. HBr(ag) B. HCl(ag)	q) so C.	blution was required to HNO₃(aq)	react	t witl D.	h 0.425 g of an acid. H2SO4(aq)
 31.	When a weak base such as NH ₃ (aq) is titrated with HCl(aq), w A. equal to 0 B. equal to 7	hat C.	is the pH at the equivale greater than 7	ence	point D.	ess than 7
 32.	A student found that orange IV indicator turned yellow and n What is the pH for the unknown solution likely to be? A. 1.2 B 3.0	neth C	yl orange turned red in : 5.3	samp	les of D	f an unknown solution. 9.0
 33	Which substance can be called an Arrhenius base?	с.	кон		D.	NaCl
 34.	What is the pH of a solution if the OH (aq) ion concentration i A. 2.6 B. 8.6	is 2. C.	5 x 10 ⁻³ mol/L? 9.8	D.	<u> </u>	

APEF Chemistry - Acid-Base Multiple Choice Questions - Page 2 of 4

 35.	35. According to the Arrhenius definition of acids and bases, what does an acid do when it is dissolved in water?						
	A. increases the hydrogen ion concentration	С.	turns blue litmus pape	r red			
	B. increases the hydroxide ion concentration	D.	turns red litmus paper	blue			
 36.	Why is acetic acid classified as a weak acid?						
	A. It does not ionize in water.	С.	It gives vinegar a sour	tast	e.		
	B. It does not neutralize bases.	D.	It ionizes slightly in w	ater.			
 37.	In the Brønsted-Lowry theory, what must a base do?						
	A. accept a proton during a collision with an acid						
	B. dissociate in aqueous solution	ار بردانه، ارم م	have 1.0 v 10 ⁻⁷ mal/l				
	C. raise the hydrogen ion concentration of an aqueou	is solution a	DOVE I.U X IU MOI/L				
~ ~							
 38.	What are the two Brønsted-Lowry acids in the reaction	on: LL O⁺(aa)	$NO^{-}(aa)$				
	$HNO_2(aq) + H_2O(aq) \rightarrow A HNO_2 and H_2O^+ B H_2O and HNO_2$	• ۲۱ ₃ Ο (۵۹) ۰ ۲	+ 1902 (aq) H₂O and H₂O⁺	D	H20 and NO2-		
20				0.			
 39.	It aluminum hydroxide is an amphoteric compound, who	at can be sai	Id about it?	ممنط	an a baga		
	 B It can act as a base in the presence of strong base 	ses. C.	It can act as error ar		or a base.		
4.0							
 40.	What happens to the concentration of hydroxide ion if	t the pH dec	creases from 11.5 to 8.5	duri	ng a reaction?		
	B It decreases by a factor of 1000	C. D	It increases by a fact	or of	3. 1000		
44							
 41.	What is the hydroxide ion concentration in an aqueous $4 + 1 \times 10^{-14}$ mol/l P 1×10^{-9} mol/l	SOLUTION IN V	vnich the hydronium ion 1 x 10 ⁻⁷ mol/l	conc	1 × 10 ⁻⁵ mol/L		
				0.			
 42.	In a titration experiment, 20.0 mL of HBr was needed	d to comple [.]	tely neutralize 40.0 mL	of O	.10 mol/L KOH. What was		
	A 0.0080 mol/l B 0.080 mol/l	C	0.20 mol/l		D 20 mal/l		
 43.	An unidentified aqueous solution is a strong electrolyte	e that cause	es blue litmus to turn re	d. W	hich of the following could		
	$A (H_2 \cap H(a_1)) B HBr(a_2)$	C	KOH(aa)	D	NaCl(aa)		
		0.		υ.	(uc)(uq)		
 44.	Which of the four statements are true?	f hydrocen i	ions in solution				
	2 Acids increase the concentration of	f hydroxide	ions in solution				
	3. Acids increase the pH of a solution	1. I.					
	Acids react with magnesium to prog		en gas.				
	······································	duce hydrog	-		2 2 1 4		
	A. 1 and 4 B. 2 and 4	duce hydrog C.	1, 2, and 4	D.	2, 3, and 4		
45.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$	duce hydrog C. as an acid?	1, 2, and 4	D.	2, 3, and 4		
45.	A.1 and 4B.2 and 4Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{*}(aq) \leftrightarrows H_2SO_3(aq)$	duce hydrog C. as an acid? C.	1, 2, and 4 HSO3 ⁻ (aq) + H3O ⁺ (aq) :	D. ∓ H₂s	2, 3, and 4 503(aq) + H₂O(I)		
45.	A.1 and 4B.2 and 4Which equation represents the reaction of $HSO_3^-(aq)$ A. $HSO_3^-(aq) + H^+(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^-(aq) + H_2O(I) \leftrightarrows H_2SO_3(aq) + OH^-(aq)$	duce hydrog C. as an acid? C. D.	1, 2, and 4 HSO3 ⁻ (aq) + H3O ⁺ (aq) = HSO3 ⁻ (aq) + NH3(aq) =	D. ∓ H₂s ₅ SO₃	2, 3, and 4 503(aq) + H₂O(I) ²-(aq) + NH₄⁺(aq)		
 45. 46.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{+}(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^{-}(aq) + H_2O(I) \leftrightarrows H_2SO_3(aq) + OH^{-}(aq)$ Which equation shows an acid-base neutralization reac	duce hydrog C. as an acid? C. D. ction?	1, 2, and 4 HSO3 ⁻ (aq) + H3O ⁺ (aq) ≤ HSO3 ⁻ (aq) + NH3(aq) ±	D. ∓ H₂s ₅ SO₃	2, 3, and 4 50₃(aq) + H₂O(I) ²⁻(aq) + NH₄⁺(aq)		
 45. 46.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H ⁺ (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H ₂ O(I) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq)	duce hydrog C. as an acid? C. D. ction? C.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$	D.	2, 3, and 4 50 ₃ (aq) + H ₂ O(I) ²⁻ (aq) + NH ₄ *(aq)		
 45. 46.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{+}(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^{-}(aq) + H_2O(1) \leftrightarrows H_2SO_3(aq) + OH^{-}(aq)$ Which equation shows an acid-base neutralization read A. $Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$ B. $2NaOH(aq) + CaCl_2(aq) \rightarrow 2NaCl(aq) + Ca(OH)_2(s)$	duce hydrog C. as an acid? C. D. ction? C. D.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$ NaOH(aq) + HCl(aq) +	D. → H2S → SO3 H2O(NaCl(2, 3, and 4 503(aq) + H2O(I) ²⁻ (aq) + NH₄⁺(aq) I) aq) + H2O(I)		
 45. 46. 47.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{+}(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^{-}(aq) + H_2O(1) \leftrightarrows H_2SO_3(aq) + OH^{-}(aq)$ Which equation shows an acid-base neutralization reac A. $Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$ B. $2NaOH(aq) + CaCl_2(aq) \rightarrow 2NaCl(aq) + Ca(OH)_2(s)$ Which phrase describes a weak aqueous acid?	duce hydrog C. as an acid? C. D. ction? C. D.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$ NaOH(aq) + HCl(aq) +	D.	2, 3, and 4 503(aq) + H2O(I) ²⁻ (aq) + NH4⁺(aq) I) aq) + H2O(I)		
 45. 46. 47.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{+}(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^{-}(aq) + H_2O(I) \leftrightarrows H_2SO_3(aq) + OH^{-}(aq)$ Which equation shows an acid-base neutralization reac A. $Zn(s) + 2HCI(aq) \rightarrow H_2(g) + ZnCI_2(aq)$ B. $2NaOH(aq) + CaCI_2(aq) \rightarrow 2NaCI(aq) + Ca(OH)_2(s)$ Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized	duce hydrog C. as an acid? C. D. ction? C. D.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) + H_3O^{+}(aq) + H_3O_3^{-}(aq) + NH_3(aq) + H_2CO_3(aq) \rightarrow CO_2(g) + NaOH(aq) + HCl(aq) + HC$	D. = H₂S = SO₃ H₂O(NaCl(D.	2, 3, and 4 503(aq) + H2O(l) ^{2°} (aq) + NH4⁺(aq) l) aq) + H2O(l) very dilute		
 45. 46. 47. 48.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ ⁻ (aq) A. HSO ₃ ⁻ (aq) + H ⁺ (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ ⁻ (aq) + H ₂ O(1) \Rightarrow H ₂ SO ₃ (aq) + OH ⁻ (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both a	duce hydrog C. as an acid? C. D. ction? C. D. C. strong acids	1, 2, and 4 H5O3 ⁻ (aq) + H3O ⁺ (aq) = H5O3 ⁻ (aq) + NH3(aq) = H2CO3(aq) → CO2(g) + NaOH(aq) + HCl(aq) + unreactive with zinc s and strong bases?	D. → H₂S → SO3 H₂O(NaCl(D.	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4*(aq) l) aq) + H2O(l) very dilute		
 45. 46. 47. 48.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{+}(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^{-}(aq) + H_2O(1) \leftrightarrows H_2SO_3(aq) + OH^{-}(aq)$ Which equation shows an acid-base neutralization reac A. $Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$ B. $2NaOH(aq) + CaCl_2(aq) \rightarrow 2NaCl(aq) + Ca(OH)_2(s)$ Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both is A. are good conductors of electricity	duce hydrog C. as an acid? C. D. ction? C. D. C. strong acids C.	1, 2, and 4 HSO3 ⁻ (aq) + H3O ⁺ (aq) = HSO3 ⁻ (aq) + NH3(aq) = H2CO3(aq) → CO2(g) + NaOH(aq) + HCl(aq) + H unreactive with zinc s and strong bases? react with zinc to prov	D. ⇒ H2S ⇒ SO3 H2O(NaCl(D. duce	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4⁺(aq) l) aq) + H2O(l) very dilute hydrogen gas		
 45. 46. 47. 48.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of $HSO_3^{-}(aq)$ A. $HSO_3^{-}(aq) + H^{+}(aq) \leftrightarrows H_2SO_3(aq)$ B. $HSO_3^{-}(aq) + H_2O(I) \leftrightarrows H_2SO_3(aq) + OH^{-}(aq)$ Which equation shows an acid-base neutralization reac A. $Zn(s) + 2HCI(aq) \rightarrow H_2(g) + ZnCI_2(aq)$ B. $2NaOH(aq) + CaCI_2(aq) \rightarrow 2NaCI(aq) + Ca(OH)_2(s)$ Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both a A. are good conductors of electricity B. have a pH of 7	duce hydrog C. as an acid? C. D. ction? C. D. strong acids C. D.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) + H_3O^{+}(aq) + H_3O_3^{-}(aq) + NH_3(aq) + H_2CO_3(aq) \rightarrow CO_2(g) + NaOH(aq) + HCl(aq) + H^{-1}$ unreactive with zinc s and strong bases? react with zinc to product the solue of the solution of the solutio	D. ⇒ H2S ⇒ SO3 H2O(NaCl(D. duce	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4⁺(aq) l) aq) + H2O(l) very dilute hydrogen gas		
 45. 46. 47. 48. 49.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H ⁺ (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H ₂ O(I) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both is A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3.	duce hydrog C. as an acid? C. D. ction? C. D. strong acids C. D. .3 x 10 ⁻⁷ mol	1, 2, and 4 HSO3 ⁻ (aq) + H3O ⁺ (aq) = HSO3 ⁻ (aq) + NH3(aq) = H2CO3(aq) → CO2(g) + NaOH(aq) + HCl(aq) + 1 unreactive with zinc s and strong bases? react with zinc to pro- turn red litmus blue /L, what is the hydroge	D. ⇒ H2S ≈ SO3 H2O(NaCl(D. duce n ion	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4⁺(aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration?		
 45. 46. 47. 48. 49.	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H ⁺ (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H ₂ O(I) \Rightarrow H ₂ SO ₃ (aq) + OH ⁻ (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both a A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L	duce hydrog C. as an acid? C. D. ction? C. b. strong acids C. D. .3 x 10 ⁻⁷ mol C.	1, 2, and 4 HSO3 ⁻ (aq) + H3O ⁺ (aq) = HSO3 ⁻ (aq) + NH3(aq) = H2CO3(aq) → CO2(g) + NaOH(aq) + HCl(aq) + H unreactive with zinc s and strong bases? react with zinc to produce turn red litmus blue /L, what is the hydroge 6.7 × 10 ⁻⁸ mol/L	D. ⇒ H25 ≈ SO3 H2O(NaCl(D. duce D. n ion D.	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4+(aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 × 10 ⁻⁸ mol/L		
 45. 46. 47. 48. 49. 50. 	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both a A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L A weak acid, HA, ionizes according to the equation:	duce hydrog C. as an acid? C. D. ction? C. Strong acids C. D. .3 × 10 ⁻⁷ mol C. HA(aa) ±	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$ NaOH(aq) + HCl(aq) + 1 unreactive with zinc s and strong bases? react with zinc to pro- turn red litmus blue /L, what is the hydroge 6.7×10^{-8} mol/L \Rightarrow H ⁺ (aq) + A ⁻ (aq)	D. ⇒ H25 ⇒ SO3 H2O(NaCl(D. duce 1 D. n ion D.	2, 3, and 4 503(aq) + H2O(l) ² ·(aq) + NH4*(aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 x 10 ⁻⁸ mol/L		
 45. 46. 47. 48. 49. 50. 	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H ₂ O(I) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both is A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L A weak acid, HA, ionizes according to the equation: If a 0.10 mol/L HA(aq) solution has [H [*]] = 0.0010 mol/N	duce hydrog C. as an acid? C. D. ction? C. Strong acids C. D. .3 x 10 ⁻⁷ mol C. HA(aq) ± L, what is th	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$ NaOH(aq) + HCl(aq) + 1 unreactive with zinc s and strong bases? react with zinc to pro- turn red litmus blue /L, what is the hydroge 6.7×10^{-8} mol/L \Rightarrow H ⁺ (aq) + A ⁻ (aq) me numerical value of Ka	D. \Rightarrow H ₂ S \Rightarrow SO ₃ H ₂ O(NaCl(D. D. duce D. n ion D.	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4+(aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 × 10 ⁻⁸ mol/L		
 45. 46. 47. 48. 49. 50. 	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H ⁺ (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H ₂ O(I) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both is A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L A weak acid, HA, ionizes according to the equation: If a 0.10 mol/L HA(aq) solution has [H ⁺] = 0.0010 mol/L A. 1.0 × 10 ⁻¹ mol/L B. 1.0 × 10 ⁻³ mol/L	duce hydrog C. as an acid? C. D. ction? C. b. strong acids C. D. .3 × 10 ⁻⁷ mol C. HA(aq) ± L, what is th C.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) + H_3O^{+}(aq) + H_3O_3^{-}(aq) + NH_3(aq) + H_2CO_3(aq) \rightarrow CO_2(g) + NaOH(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq)$ react with zinc to produce of turn red litmus blue /L, what is the hydroge 6.7 × 10 ⁻⁸ mol/L \Rightarrow H ⁺ (aq) + A ⁻ (aq) he numerical value of Ka 1.0 × 10 ⁻⁵ mol/L	D. ⇒ H25 ⇒ SO3 H2O(NaCl(D. duce 1 D. 2 D. D.	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4+(aq)) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 × 10 ⁻⁶ mol/L 1.0 × 10 ⁻⁶ mol/L		
 45. 46. 47. 48. 49. 50. 51. 	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both a A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L A weak acid, HA, ionizes according to the equation: If a 0.10 mol/L HA(aq) solution has [H [*]] = 0.0010 mol/L A. 1.0 × 10 ⁻¹ mol/L B. 1.0 × 10 ⁻³ mol/L What is the concentration of NaOH(aq) solution, if 30	duce hydrog C. as an acid? C. D. ction? C. C. strong acids C. D. .3 x 10 ⁻⁷ mol C. HA(aq) ± L, what is th C. 0.0 mL of 1.0	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) + H_3O^{+}(aq) + H_3O^{+}(aq) + H_3(aq) + H_2CO_3(aq) \rightarrow CO_2(g) + NaOH(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + H^{-}(aq) + HCl(aq) + HCl(aq) + H^{-}(aq) + H^{-}(aq) + H^{-}(aq) + A^{-}(aq)$ The numerical value of Kat 1.0 × 10 ⁻⁵ mol/L 0 mol/L HCN(aq) neutrol	D. ⇒ H25 ⇒ SO3 H2O(NaCl(D. duce D. n ion D. ? D. alizes	2, 3, and 4 503(aq) + H2O(l) ² ·(aq) + NH4*(aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 × 10 ⁻⁶ mol/L 1.0 × 10 ⁻⁶ mol/L 25.0 mL of the NaOH(aq)		
 45. 46. 47. 48. 49. 50. 51. 	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H ₂ O(I) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both is A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L A weak acid, HA, ionizes according to the equation: If a 0.10 mol/L HA(aq) solution has [H ⁺] = 0.0010 mol/L A. 1.0 × 10 ⁻¹ mol/L B. 1.0 × 10 ⁻³ mol/L What is the concentration of NaOH(aq) solution, if 30 solution?	duce hydrog C. as an acid? C. D. ction? C. Strong acids C. D. .3 × 10 ⁻⁷ mol C. HA(aq) ± L, what is th C. 0.0 mL of 1.0	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$ NaOH(aq) + HCl(aq) + 1 unreactive with zinc s and strong bases? react with zinc to pro- turn red litmus blue /L, what is the hydroge 6.7×10^{-8} mol/L \Rightarrow H ⁺ (aq) + A ⁻ (aq) ne numerical value of Ka 1.0×10^{-5} mol/L 0 mol/L HCN(aq) neutro	D. ⇒ H25 ⇒ SO3 H20(D. D. duce D. n ion D. 2 D. lizes	2, 3, and 4 503(aq) + H2O(l) ² ·(aq) + NH4 (aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 × 10 ⁻⁶ mol/L 1.0 × 10 ⁻⁶ mol/L 25.0 mL of the NaOH(aq)		
 45. 46. 47. 48. 49. 50. 51. 	A. 1 and 4 B. 2 and 4 Which equation represents the reaction of HSO ₃ (aq) A. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) B. HSO ₃ (aq) + H [*] (aq) \Rightarrow H ₂ SO ₃ (aq) + OH (aq) Which equation shows an acid-base neutralization reac A. Zn(s) + 2HCl(aq) \Rightarrow H ₂ (g) + ZnCl ₂ (aq) B. 2NaOH(aq) + CaCl ₂ (aq) \Rightarrow 2NaCl(aq) + Ca(OH) ₂ (s) Which phrase describes a weak aqueous acid? A. highly dissociated B. partially ionized Which property is characteristic of solutions of both A. are good conductors of electricity B. have a pH of 7 If egg whites have a hydroxide ion concentration of 3. A. 3.3 × 10 ⁷ mol/L B. 1.0 × 10 ⁻⁷ mol/L A weak acid, HA, ionizes according to the equation: If a 0.10 mol/L HA(aq) solution has [H ⁺] = 0.0010 mol/L A. 1.0 × 10 ⁻¹ mol/L B. 1.0 × 10 ⁻³ mol/L What is the concentration of NaOH(aq) solution, if 30 solution? A. 0.25 mol/L B. 0.83 mol/L	duce hydrog C. as an acid? C. D. ction? C. D. C. strong acids C. D. .3 × 10 ⁻⁷ mol C. HA(aq) ± L, what is th C. 0.0 mL of 1.0 C.	1, 2, and 4 $HSO_3^{-}(aq) + H_3O^{+}(aq) =$ $HSO_3^{-}(aq) + NH_3(aq) =$ $H_2CO_3(aq) \rightarrow CO_2(g) +$ NaOH(aq) + HCl(aq) + unreactive with zinc s and strong bases? react with zinc to pro- turn red litmus blue /L, what is the hydroge 6.7×10^{-8} mol/L \Rightarrow H [*] (aq) + A ⁻ (aq) the numerical value of Ka 1.0×10^{-5} mol/L 0 mol/L HCN(aq) neutrol	D. ⇒ H25 ⇒ SO3 H2O(NaCl(D. duce I D. duce I D. duce I D. D. D. D. D. D. D. D. D. D.	2, 3, and 4 503(aq) + H2O(l) ²⁻ (aq) + NH4+(aq) 1) aq) + H2O(l) very dilute hydrogen gas concentration? 3.0 × 10 ⁻⁶ mol/L 1.0 × 10 ⁻⁶ mol/L 25.0 mL of the NaOH(aq) 1.2 mol/L		

 52.	The Ka values of some monoprotic acids are shown in	the table:		
	Acid	Ka value		
	Acetic acid	1.8 × 10 ⁻⁵ mol/L		
	Benzoic acid	6.4 × 10⁻⁵ mol/L		
	Formic acid	$1.8 \times 10^{-4} \text{ mol/L}$		
	Hydrocyanic acid	$6.2 \times 10^{-10} \text{ mol/L}$		
	A 0 10 mol/L solution of which acid would co	ntain the most ions?		
	A acetic acid B benzoic acid	C formic acid	Ν	hydrocyanic acid
			υ.	nyai beyanie dela
 53.	What is the pH of the equivalence point of a titration	n of HCl(aq) with NaOH(aq)?		
	A. equals 7 B. greater than 7.0	C. less than 7	D.	unknown
54	Which statements are characteristic of acide?			
 54.	1 They turn blue litmus red	3 They tasta sour		
	2 They react with bacas to produce a solt and	bydrogen 1 They neutralize by		
	A 1 and A P 1 3 and A	C 2 and A	1363. N	2 3 and 4
	A. 1 and 4 B. 1, 5, and 4		υ.	2, 3, und 4
 55.	Which are the Brønsted-Lowry bases in this reaction?	?		
	HCOO ⁻ (aq) + H₂O(I) ≒	HCOOH(aq) + OH⁻(aq)		
	A. HCOO ⁻ and HCOOH B. HCOO ⁻ and OH ⁻	C. H ₂ O and HCOOH	D.	H₂O and OH⁻
F/				
 56.	What is the conjugate base of H_2PO_3 -(aq)			2^{2}
	A. $H_3PO_3(aq)$ B. $H_2PO_4(aq)$	C. HPO3 ⁻ (aq)	D.	PO3 ² (aq)
57.	Which acts as an amphoteric species in aqueous soluti	ion?		
	A. HCO3 ⁻ B. HNO3	C. PO₄ ³⁻	D.	SO₄ ²⁻
				·
 58.	If a 0.1 mol/L solution has a pH of 4, what is the solution	tion likely to be?		
	A. a strong acid B. a strong base	C. a weak acid	D.	a weak base
59	Which solution would have the lowest nH2			
 07.	$A = 0.1 \text{ mol/L} (H_2COOH(ag))$	C 0.1 mol/L NaOH(aa)		
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	$D = 0.1 \text{ mol}/1 \text{ NH}_2(ag)$		
		D. 0.1 110/ 2 14/13(44)		
 60.	What is the $[H_3O^*]$ of seawater that has a pH of 8.10	?		
	A. 7.9×10^{-9} mol/L B. 1.0×10^{-8} mol/L	C. $1.3 \times 10^{-6} \text{ mol/L}$	D.	8.0 × 10⁻¹ mol/L
61	A colution of milk of magnesia $M_0(OH)_0(a_0)$ has a nH	of 10.40. What is its $[OH^{-1}]$		
 01.	A 10 x 10^{-11} mal/l P 10 x 10^{-7} mal/l	$C = 1.0 \times 10^{-4} \text{ mol/l}$		2.5×10^{-4} mol/l
	A. 4.0 X 10 1101/L B. 1.0 X 10 1101/L	C. 1.0 × 10 MONE	U.	2.5 X 10 MOVE
 62.	Which of the following solutions has the greatest hyc	droxide ion concentration?		
	A. a buffer solution with pH = 5	C. 0.1 mol/L HCl		
	B. 0.1 mol/L CH₃COOH	D. pure water		
40		ania anid is added to the Na II COO	~	
 03.	what is the main reaction that occurs when hydrochic A = C + C + C + C + C + C + C + C + C + C	bric acid is added to the $Na_{CH_3}COO-1$		
	A. $CH_3COUH(aq) + CI(aq) \rightarrow HCI(aq) + CH_3COU$	C. $H_3 \cup (aq) + CH_3 \cup O \cup (aq)$) → ($CH_3COOH(aq) + H_2O(1)$
	B. $HCl(aq) + OH(aq) \rightarrow H_2O(1) + Cl(aq)$	D. $H_3O(aq) + OH(aq) \rightarrow 2$	H ₂ U	
 64.	Why does the addition of a small volume of dilute HC	l(aq) to a mixture of aqueous solutior	ıs of	CH3COOH and NaCH3COO
	have little effect on the pH?			
	A. $H_3O^{*}(aq)$ ions in the buffer solution inhibit the io	nization of the HCl(aq)		
	B. The $CH_3COO^{-}(aq)$ ions in the buffer solution read	t with the $H_3O^{+}(aq)$ ions from the H	Cl(ac	1)
	C. The quantity of $H_3O^{\dagger}(aq)$ ions produced by the	CH ₃ COOH(ag) approximately equals	the	,, H₃O⁺(aq) ions produced by
	the HCl(ag)			
	D. The volume of the solution is not increased to a s	significant extent.		
 65.	Which of the following is amphiprotic (amphoteric)?			
	A. Cl^2 B. HCO_3^2	C. HCl	D.	NH₄⁺
66	What is the pH of a solution that contains 0.25 mol of	f HBr in 750 mL of solution?		
 00.			Γ	35
	А. 0.33 В. 0.40	C. 0.00	υ.	5.5
 67.	A solution of sodium hydroxide, NaOH(aq), contains	the indicator bromothymol blue. I	f hya	drochloric acid, HCl(aq), is
	added drop by drop to the NaOH(aq), what will be the	e order of the color changes?		
	A. blue to green to yellow B. blue to yellow to gre	een C. green to blue to yellow	D.	yellow to green to blue
(0	The initial of the line has a burden of the second	- · · · · · · · · · · · · · · · · · · ·		- معام معام م
 ٥٥.	The juice of the time has a hydronium ion concentrat	ion which is about 100 000 times gr	гате	r inan that of pure water.
	wnat is the approximate pH of lime juice?		•	FO
	A. 1.U B. 2.1	L. 3.6	D.	5.2

APEF Chemistry - Acid-Base Multiple Choice Questions - Page 4 of 4