Titrations

1. Write a balanced neutralization reaction, and calculate the unknown quantity for the complete neutralization of the following.

	Acid		Base	
	Concentration	Volume	Concentration	Volume
a)	0.250 M HCI	30.0 cm ³	? NaOH	25.0 cm ³
b)	0.500 M H ₂ SO ₄	?	0.750 M KOH	20.0 cm ³
c)	? HNO3	15.0 cm ³	1.50 M NH₄OH	25.0 cm ³
d)	0.400 M HNO3	30.0 cm ³	0.800 M NaOH	?

- 2. What is the molarity of a NaOH solution if 25.00 cm³ is required to completely neutralize 40.00 cm³ of a 1.50 M solution of H_2SO_4 ?
- 3. Calculate the volume of a 0.600 M solution of HNO_3 necessary to neutralize 28.55 cm³ of a 0.450 M solution of KOH.
- 4. A titration of 15.00 cm³ of household ammonia, NH₄OH(aq), required 38.57 cm³ of 0.780 M HCl. Calculate the molarity of the ammonia.
- 5. What volume of 0.250 M H₃PO₄ is required to neutralize 30.00 cm³ of a 0.0500 M Ba(OH)₂ solution?
- 6. What is the concentration of NaOH if 25.00 cm³ are neutralized by 40.80 cm³ of 0.125 M HCl?
- 7. 17.5 g of NaOH is dissolved in enough water to make 500.0 cm³ of solution. What volume of 0.625 M HBr would be required to neutralize 50.0 cm³ of the NaOH solution?
- 8. 31.6 cm³ of 0.125 M HNO₃ are required to neutralize a 25.0 cm³ sample of Mg(OH)₂. What is the concentration of the Mg(OH)₂?
- 9. A solution was prepared by dissolving 25.9 g of sodium hydroxide in enough water to make 500 cm³ of solution. 25.0 cm³ of this solution was titrated with 17.6 cm³ of hydrochloric acid. What is the concentration of the hydrochloric acid solution?
- A solution was prepared by taking 8.60 cm³ of 18.0 M H₂SO₄ and diluting it to a volume of 750.0 cm³.
 28.7 cm³ of this solution was required to completely neutralize 25.0 cm³ of a KOH solution. What is the molarity of the base?
- 11. What mass of Ca(OH)₂ would be required to completely neutralize 50.0 cm³ of 0.125 M HCl?
- 12. What mass of Mg(OH)₂ would be required to completely neutralize 70.0 cm³ of 0.175 M HNO₃?
- 13. A 1.20 g sample of an unknown acid is dissolved in water and titrated with 0.150 M NaOH to the equivalence point. The volume of base is 69.0 cm³. Calculate the molar mass of the acid. The titration curve shows that the acid is monoprotic.