Titrations

1. Write a balanced neutralization reaction, and calculate the unknown quantity for the complete neutralization of the following.

	Acid		Base	
	Concentration	Volume	Concentration	Volume
a)	0.250 M HCl	$30.0 \mathrm{~cm}^{3}$	$? \mathrm{NaOH}$	$25.0 \mathrm{~cm}^{3}$
b)	$0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$	$?$	0.750 M KOH	$20.0 \mathrm{~cm}^{3}$
c)	$? \mathrm{HNO}_{3}$	$15.0 \mathrm{~cm}^{3}$	$1.50 \mathrm{M} \mathrm{NH} \mathrm{HOH}_{4}$	$25.0 \mathrm{~cm}^{3}$
d)	$0.400 \mathrm{M} \mathrm{HNO}_{3}$	$30.0 \mathrm{~cm}^{3}$	0.800 M NaOH	$?$

2. What is the molarity of a NaOH solution if $25.00 \mathrm{~cm}^{3}$ is required to completely neutralize $40.00 \mathrm{~cm}^{3}$ of a 1.50 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
3. Calculate the volume of a 0.600 M solution of HNO_{3} necessary to neutralize $28.55 \mathrm{~cm}^{3}$ of a 0.450 M solution of KOH .
4. A titration of $15.00 \mathrm{~cm}^{3}$ of household ammonia, $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$, required $38.57 \mathrm{~cm}^{3}$ of 0.780 M HCl . Calculate the molarity of the ammonia.
5. What volume of $0.250 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is required to neutralize $30.00 \mathrm{~cm}^{3}$ of a $0.0500 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?
6. What is the concentration of NaOH if $25.00 \mathrm{~cm}^{3}$ are neutralized by $40.80 \mathrm{~cm}^{3}$ of 0.125 M HCl ?
7. 17.5 g of NaOH is dissolved in enough water to make $500.0 \mathrm{~cm}^{3}$ of solution. What volume of 0.625 M HBr would be required to neutralize $50.0 \mathrm{~cm}^{3}$ of the NaOH solution?
8. $31.6 \mathrm{~cm}^{3}$ of $0.125 \mathrm{M} \mathrm{HNO}_{3}$ are required to neutralize a $25.0 \mathrm{~cm}^{3}$ sample of $\mathrm{Mg}(\mathrm{OH})_{2}$. What is the concentration of the $\mathrm{Mg}(\mathrm{OH})_{2}$?
9. A solution was prepared by dissolving 25.9 g of sodium hydroxide in enough water to make $500 \mathrm{~cm}^{3}$ of solution. $25.0 \mathrm{~cm}^{3}$ of this solution was titrated with $17.6 \mathrm{~cm}^{3}$ of hydrochloric acid. What is the concentration of the hydrochloric acid solution?
10. A solution was prepared by taking $8.60 \mathrm{~cm}^{3}$ of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and diluting it to a volume of 750.0 cm 3 . $28.7 \mathrm{~cm}^{3}$ of this solution was required to completely neutralize $25.0 \mathrm{~cm}^{3}$ of a KOH solution. What is the molarity of the base?
11. What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ would be required to completely neutralize $50.0 \mathrm{~cm}^{3}$ of 0.125 M HCl ?
12. What mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ would be required to completely neutralize $70.0 \mathrm{~cm}^{3}$ of $0.175 \mathrm{M} \mathrm{HNO}_{3}$?
13. A 1.20 g sample of an unknown acid is dissolved in water and titrated with 0.150 M NaOH to the equivalence point. The volume of base is $69.0 \mathrm{~cm}^{3}$. Calculate the molar mass of the acid. The titration curve shows that the acid is monoprotic.
