Acids and Bases - Notes

Anhydrous

- without water

Basic Anhydride

- Substance that produces a base in water
- Generally a metallic oxide
o $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
o $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$

Acidic Anhydride

- Substance that produces an acid in water
- Generally a non-metallic oxide
$\left.\begin{array}{ll}0 & \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\ 0 & \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3} \\ 0 & \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\ 0 & \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3} \\ 0 & \mathrm{NO}_{x}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}\end{array}\right\} \quad$ Source of Acid Rain

Neutralization Reactions

- Acid + Base \rightarrow Salt + Water
$\begin{array}{ll}\text { o } & \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\ \text { o } & \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}\end{array}$

Hydrolysis Reaction

- The reaction of a salt with water to produce an acidic or basic solution.
- Salt + Water \rightarrow Acid + Base
- $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\downarrow}{\mathrm{HCl}}+\underset{\downarrow}{\mathrm{NaOH}} \xrightarrow{\downarrow} \quad \begin{aligned} & \text { (strong acid + strong base) }\end{aligned}$
$\mathrm{H}^{+}+\mathrm{Cl}^{-} \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], \quad \therefore$ the solution is neutral and hydrolysis does not occur.
- $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH}$

$$
\downarrow \uparrow \quad \downarrow \quad \text { (weak acid + strong base) }
$$

$\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right], \quad \therefore$ the solution is basic and hydrolysis does occur.

- $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\downarrow}{2 \mathrm{HNO}_{3}}+\quad \mathrm{Zn}(\mathrm{OH})_{2}$
$2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \quad \mathrm{Zn}^{2+}+2 \mathrm{OH}^{-}$
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right], \quad \therefore$ the solution is acidic and hydrolysis does occur.

Naming Acids: The formula of an acid is one or more hydrogens bonded to a monatomic or polyatomic anion. The way that the acid is named is determined by the suffix of the anion.

hydroge	ide	becomes hy	ic acid	
hydrogen	ate	becomes		
hydrogen		becomes		
examples:	HCl	hydrogen chloride	becomes	hydrochloric acid
	HClO_{4}	hydrogen perchlorate	becomes	perchloric acid
	HClO_{3}	hydrogen chlorate	becomes	chloric acid
	HClO_{2}	hydrogen chlorite	becomes	chlorous acid
	HClO	hydrogen hypochlorite	becomes	hypochlorous acid

