Plot a pH curve for the titration of 20.0 mL of $0.300 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid with $0.200 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide.
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
First, calculate the volume of sodium hydroxide required to reach the endpoint of the titration.

$$
\begin{aligned}
& \text { endpoint } \frac{C_{a} V_{a}}{R_{a}}=\frac{C_{b} V_{b}}{R_{b}} \therefore \mathrm{Vb}=\frac{C_{a} V_{a} R_{b}}{C_{b} R_{a}} \\
& V_{b}=\frac{(0.300 \mathrm{M})(0.0200 \mathrm{~L})(1)}{(0.200 \mathrm{M})(1)}=0.0300 \mathrm{~L} \text { or } 30.0 \mathrm{~mL}
\end{aligned}
$$

The pH at the endpoint of a titration of a strong acid with a strong base will equal seven.
Next, select volumes of sodium hydroxide for the data table. Initially, the volume of NaOH should increase in large increments, but as you approach the endpoint, the increments should become smaller and smaller.

Volume of NaOH added (mL)	pH
0	
10.0	
20.0	
25.0	
27.0	
28.0	
29.0	
29.5	
29.9	
30.0 (endpoint)	
30.1	
30.5	
31.0	
32.0	
35.0	
50.0	
60.0	

Next, calculate the pH for each of the volumes selected for the data table.

0 mL of base added
At this point, only acid is present. HCl is a strong acid: $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$ $\left[H^{+}\right]=0.300 \mathrm{M} \therefore \mathrm{pH}=-\log (0.400)=0.523$

10 mL of base added

$$
\begin{aligned}
& \mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+} \\
& \mathrm{mol} \mathrm{OH} \\
& \text { excess }=(0.200 \mathrm{M})(0.0100 \mathrm{~L})=0.00200 \mathrm{~mol} \mathrm{OH}^{-} \\
&=0.00400 \mathrm{~mol} \mathrm{H}^{+} \\
& {\left[\mathrm{H}^{+}\right]=(n \div \mathrm{V}) }=0.00400 \mathrm{~mol}_{-0}=0.0300 \mathrm{~L}=0.133 \mathrm{M} \\
& \therefore \quad \mathrm{pH}=-\log (0.133)=0.875
\end{aligned}
$$

20 mL of base added

25 mL of base added
$\mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0250 \mathrm{~L})=0.00500 \mathrm{~mol} \mathrm{OH}^{-}$
excess $\quad=0.00100 \mathrm{~mol} \mathrm{H}^{+}$
$\left[\mathrm{H}^{+}\right]=(\mathrm{n} \div \mathrm{V})=0.00100 \mathrm{~mol} \div 0.0450 \mathrm{~L}=0.0222 \mathrm{M}$
$\therefore \mathrm{pH}=-\log (0.0222)=1.65$
27 mL of base added
$\mathrm{mol} \mathrm{H}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0270 \mathrm{~L})=0.00540 \mathrm{~mol} \mathrm{OH}^{-}$
excess $\quad=0.00060 \mathrm{~mol} \mathrm{H}^{+}$

$$
\left[\mathrm{H}^{+}\right]=(n \div \mathrm{V})=0.00060 \mathrm{~mol} \div 0.0470 \mathrm{~L}=0.0128 \mathrm{M}
$$

$$
\therefore \quad \mathrm{pH}=-\log (0.0128)=1.89
$$

28 mL of base added
$\begin{aligned} \mathrm{mol} \mathrm{H} & =(0.300 \mathrm{M})(0.0200 \mathrm{~L})\end{aligned}=0.00600 \mathrm{~mol} \mathrm{H}^{+}{ }^{+}=(0.200 \mathrm{M})(0.0280 \mathrm{~L})=0.00560 \mathrm{~mol} \mathrm{OH}^{-}$.
$\left[H^{+}\right]=(n \div V)=0.00040 \mathrm{~mol} \div 0.0480 \mathrm{~L}=0.00833 \mathrm{M}$
$\therefore \mathrm{pH}=-\log (0.00833)=2.08$
29 mL of base added

$$
\begin{aligned}
\mathrm{mol} \mathrm{H}^{+} & =(0.300 \mathrm{M})(0.0200 \mathrm{~L})
\end{aligned}=0.00600 \mathrm{~mol} \mathrm{H}^{+}, ~(0.0290 \mathrm{~L})=0.00580 \mathrm{~mol} \mathrm{OH}^{-} .
$$

$$
\left[\mathrm{H}^{+}\right]=(\mathrm{n} \div \mathrm{V})=0.00020 \mathrm{~mol} \div 0.0490 \mathrm{~L}=0.00408 \mathrm{M}
$$

$$
\therefore \quad \mathrm{pH}=-\log (0.00408)=2.39
$$

$$
\begin{aligned}
& \mathrm{mol} \mathrm{H}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+} \\
& \mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0200 \mathrm{~L})=0.00400 \mathrm{~mol} \mathrm{OH}^{-} \\
& =0.00200 \mathrm{~mol} \mathrm{H}^{+} \\
& {\left[\mathrm{H}^{+}\right]=(n \div \mathrm{V})=0.00200 \mathrm{~mol} \div 0.0400 \mathrm{~L}=0.0500 \mathrm{M}} \\
& \therefore \mathrm{pH}=-\log (0.0500)=1.30
\end{aligned}
$$

29.5 mL of base added

$$
\begin{aligned}
& \mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+} \\
& \mathrm{mol} \mathrm{OH} \\
& \text { excess }=(0.200 \mathrm{M})(0.0295 \mathrm{~L}) \\
&=0.00590 \mathrm{~mol} \mathrm{OH}^{-} \\
&=0.00010 \mathrm{~mol} \mathrm{H}^{+} \\
& {\left[H^{+}\right]=(n \div \mathrm{V}) }=0.00010 \mathrm{~mol} \div 0.0495 \mathrm{~L}=0.00202 \mathrm{M} \\
& \therefore \quad \mathrm{pH}=-\log (0.00202)=2.69
\end{aligned}
$$

29.9 mL of base added
$\begin{aligned} \mathrm{mol} \mathrm{H} & =(0.300 \mathrm{M})(0.0200 \mathrm{~L})\end{aligned}=0.00600 \mathrm{~mol} \mathrm{H}^{+}{ }^{+}=(0.200 \mathrm{M})(0.0299 \mathrm{~L})=0.00598 \mathrm{~mol} \mathrm{OH}^{-}$.

$$
\left[\mathrm{H}^{+}\right]=(n \div \mathrm{V})=0.00002 \mathrm{~mol} \div 0.0499 \mathrm{~L}=0.000401 \mathrm{M}
$$

$$
\therefore \mathrm{pH}=-\log (0.000401)=3.40
$$

30.1 mL of base added

$$
\begin{aligned}
& \mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+} \\
& \mathrm{mol} \mathrm{OH} \\
& \text { excess }
\end{aligned} \quad \begin{aligned}
&(0.200 \mathrm{M})(0.0301 \mathrm{~L})=0.00602 \mathrm{~mol} \mathrm{OH}^{-} \\
&=0.00002 \mathrm{~mol} \mathrm{OH}^{-} \\
& \quad\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00002 \mathrm{~mol} \div 0.0501 \mathrm{~L}^{-}=0.000399 \mathrm{M} \\
& \therefore \quad \mathrm{pOH}=-\log (0.000399)=3.40, \quad \therefore \mathrm{pH}=10.6
\end{aligned}
$$

30.5 mL of base added
$\mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0305 \mathrm{~L})=\underline{0.00610 \mathrm{~mol} \mathrm{OH}^{-}}$
excess $\quad=0.00010 \mathrm{~mol} \mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=(\mathrm{n} \div \mathrm{V})=0.00010 \mathrm{~mol} \div 0.0505 \mathrm{~L}=0.00198 \mathrm{M}$
$\therefore \mathrm{pOH}=-\log (0.00198)=2.70, \quad \therefore \mathrm{pH}=11.3$
31.0 mL of base added
$\mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0310 \mathrm{~L})=0.00620 \mathrm{~mol} \mathrm{OH}^{-}$
excess $\quad=0.00020 \mathrm{~mol} \mathrm{OH}^{-}$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00020 \mathrm{~mol} \div 0.0510 \mathrm{~L} }=0.00392 \mathrm{M} \\
& \therefore \quad \mathrm{pOH}=-\log (0.00392)=2.41, \quad \therefore \mathrm{pH}=11.6
\end{aligned}
$$

32.0 mL of base added

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00040 \mathrm{~mol} \div 0.0520 \mathrm{~L}=0.00769 \mathrm{M}} \\
\therefore \quad \mathrm{pOH}=-\log (0.00769)=2.11, \quad \therefore \mathrm{pH}=11.9
\end{gathered}
$$

35.0 mL of base added
$\mathrm{mol} \mathrm{H}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0350 \mathrm{~L})=0.00700 \mathrm{~mol} \mathrm{OH}^{-}$
excess $\quad=0.00100 \mathrm{~mol} \mathrm{OH}^{-}$

$$
\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00100 \mathrm{~mol} \div 0.0550 \mathrm{~L}=0.0182 \mathrm{M}
$$

$$
\therefore \mathrm{pOH}=-\log (0.0182)=1.74, \quad \therefore \mathrm{pH}=12.3
$$

$$
\begin{aligned}
& \mathrm{mol} \mathrm{H}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+} \\
& \mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0320 \mathrm{~L})=\underline{0.00640 \mathrm{~mol} \mathrm{OH}^{-}} \\
& \text {excess } \quad=0.00040 \mathrm{~mol} \mathrm{OH}^{-}
\end{aligned}
$$

40.0 mL of base added
$\mathrm{mol} \mathrm{H}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0400 \mathrm{~L})=0.00800 \mathrm{~mol} \mathrm{OH}^{-}$
excess $\quad=0.00200 \mathrm{~mol} \mathrm{OH}^{-}$

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00200 \mathrm{~mol} \div 0.0600 \mathrm{~L}=0.0333 \mathrm{M}} \\
\therefore \text { pOH }=-\log (0.0333)=1.48, \quad \therefore \mathrm{pH}=12.5
\end{gathered}
$$

50.0 mL of base added
$\mathrm{mol} \mathrm{H}^{+}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}=(0.200 \mathrm{M})(0.0500 \mathrm{~L})=0.0100 \mathrm{~mol} \mathrm{OH}^{-}$
excess

$$
=0.00400 \mathrm{~mol} \mathrm{OH}^{-}
$$

$$
\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00400 \mathrm{~mol} \div 0.0700 \mathrm{~L}=0.0571 \mathrm{M}
$$

$$
\therefore \mathrm{pOH}=-\log (0.0571)=1.24, \quad \therefore \mathrm{pH}=12.8
$$

60.0 mL of base added
$\mathrm{mol} \mathrm{H}=(0.300 \mathrm{M})(0.0200 \mathrm{~L})=0.00600 \mathrm{~mol} \mathrm{H}^{+}$
$\mathrm{mol} \mathrm{OH}^{-}=(0.200 \mathrm{M})(0.0600 \mathrm{~L})=0.0120 \mathrm{~mol} \mathrm{OH}^{-}$
excess $\quad=0.00600 \mathrm{~mol} \mathrm{OH}^{-}$

$$
\left[\mathrm{OH}^{-}\right]=(n \div \mathrm{V})=0.00600 \mathrm{~mol} \div 0.0800 \mathrm{~L}=0.0750 \mathrm{M}
$$

$$
\therefore \mathrm{pOH}=-\log (0.0750)=1.12, \quad \therefore \mathrm{pH}=12.9
$$

Volume of NaOH added (mL)	pH
0	0.523
10.0	0.875
20.0	1.30
25.0	1.65
27.0	1.89
28.0	2.08
29.0	2.39
29.5	2.69
29.9	3.40
30.0	7
30.1	10.6
30.5	11.3
31.0	11.6
32.0	11.9
35.0	12.3
40.0	12.5
50.0	12.8
60.0	12.9

pH versus volume of NaOH added

