$\frac{\text{Ionization of Water}}{H_2O(I) + H_2O(I) \Rightarrow H_3O^{+}(aq) + OH^{-}(aq)}$

The self-ionization of water occurs to a very small extent. All water samples will contain both the hydronium ion and the hydroxide ions. In pure water the concentration of each of these ions is equal $(1 \times 10^{-7} \text{ M})$, therefore pure water is neutral. An acidic or basic solution exists when the concentration of one is greater than the other.

 $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$

 $K_{\ensuremath{\text{w}}}$ - the ionization constant for water

In any aqueous solution the concentrations of hydroxide and hydronium ions are interdependent. As the concentration of one increases the other decreases.

<u>The pH scale - 1909</u>					
0		7 -		14	
very	slightly	$\mathbf{\Psi}$	slightly	very	
acidic	acidic	$\mathbf{\Lambda}$	basic	basic	
		neutro	al		

Calculation of pH

pH = -log[H₃O⁺]	pOH = -log[OH ⁻]			
[H₃O ⁺] = antilog(-pH) [H₃O ⁺] = 10 ^{-pH}	[OH ⁻] = antilog(-pOH) [OH ⁻] = 10 ^{-pOH}			
pH + pOH = 14				

For each of the following, calculate $[H_3O^+]$, $[OH^-]$, pH, and pOH.

- 1. $[H_3O^+] = 1.56 \times 10^{-3} \text{ mol/L}$
- 2. $[H_3O^+] = 0.125 \text{ M}$
- 3. $[OH^{-}] = 4.12 \times 10^{-4} \text{ mol/L}$
- 4. $[OH^{-}] = 0.0250 \text{ M}$
- 5. pH = 3.45
- 6. pH = 9.76
- 7. pOH = 2.45
- 8. pOH = 12.5