Ionization of Water

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The self-ionization of water occurs to a very small extent. All water samples will contain both the hydronium ion and the hydroxide ions. In pure water the concentration of each of these ions is equal ($1 \times$ $10^{-7} \mathrm{M}$), therefore pure water is neutral. An acidic or basic solution exists when the concentration of one is greater than the other.

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
\mathrm{~K}_{\mathrm{w}} \text { - the ionization constant for water }
\end{gathered}
$$

In any aqueous solution the concentrations of hydroxide and hydronium ions are interdependent. As the concentration of one increases the other decreases.

The pH scale - 1909

Calculation of pH

```
pH = - log[H3O+] pOH = - log[OH
[H3\mp@subsup{O}{}{+}]=\mathrm{ antilog(-pH) [OH+}]=\mathrm{ antilog(-pOH)}
[H3O+}]=1\mp@subsup{0}{}{-\textrm{pH}}\quad[\mp@subsup{\textrm{OH}}{}{-}]=1\mp@subsup{0}{}{-\textrm{pOH}
```

$\mathrm{pH}+\mathrm{pOH}=14$

For each of the following, calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH .

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.56 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.125 \mathrm{M}$
3. $\left[\mathrm{OH}^{-}\right]=4.12 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
4. $\left[\mathrm{OH}^{-}\right]=0.0250 \mathrm{M}$
5. $\mathrm{pH}=3.45$
6. $\mathrm{pH}=9.76$
7. $\mathrm{pOH}=2.45$
8. $\mathrm{pOH}=12.5$
