Empirical Formula Notes

Shows the smallest whole number ratio of atoms of each element in a compound. Also called the simplest formula. Empirical formula can be calculated from percentage composition data.

Textbook Empirical formula is explained on pages 87-94 in your textbook (McGraw-Hill Ryerson Chemistry).

Question 8 on the mole calculations worksheet deals with empirical formula.
Questions 8a) 80.0\% carbon, 20.0\% hydrogen
Step 1 Assume a 100 g sample and calculate the mass of each element in the sample. A 100 g s ample is chosen for convenience - it makes converting from percentage to mass simple.
80.0 g carbon $\quad 20.0 \mathrm{~g}$ hydrogen

Step 2 Calculate moles of each element. Chemical formulas are written in terms of atoms of each element or moles of atoms of each element.

$\frac{80.0 \mathrm{~g} \mathrm{carbon}}{12.011 \mathrm{~g} / \mathrm{mol}}$	
	$\frac{20.0 \mathrm{~g} \text { hydrogen }}{1.00794 \mathrm{~g} / \mathrm{mol}}$
6.66056 mol C	19.84245 mol H

Step 3 Now you have a mole ratio, but it is not whole numbers. Divide all results by the smallest answer - this will give you at least one whole number.

$$
\begin{aligned}
& \frac{6.66056 \mathrm{~mol} \mathrm{C}}{6.66056} \quad \frac{19.84245 \mathrm{~mol} \mathrm{H}}{6.66056} \\
& 1.00 \\
& 2.979
\end{aligned}
$$

Because the data is experimental, the results are often not exact. If the number, when rounded to one decimal place is a whole number, that is close enough. 2.979 - if you round this to one decimal place, the nine would round up as it is followed by a 7 , giving you 3.0, which is a whole number. Therefore the ratio of $C: H$ is $1: 3$ and the empirical formula is

CH_{3}

Step 4 If you do not get a whole number from step 3, multiply by a whole number in order to produce a whole number ratio.

8b) 35.0% nitrogen 5.0% hydrogen 60.0% oxygen
Step 1 Convert percentages to mass based on a 100 g sample
Step 2 Convert mass to moles

$\frac{35.0 \mathrm{~g} \mathrm{~N}}{14.0067 \mathrm{~g} / \mathrm{mol}}$	$\frac{5.0 \mathrm{~g} \mathrm{H}}{1.00794 \mathrm{~g} / \mathrm{mol}}$		$\frac{60.0 \mathrm{~g} \mathrm{O}}{15.9994 \mathrm{~g} / \mathrm{mol}}$
2.4988 mol N	4.9606 mol H	3.7501 mol O	

Step 3 Divide by the smallest

| $\frac{2.4988 \mathrm{~mol} \mathrm{~N}}{2.4988}$ $\frac{4.9606 \mathrm{~mol} \mathrm{H}}{2.4988}$
 $\frac{3.7501 \mathrm{~mol} \mathrm{O}}{2.4988}$
 1.00 1.985 | 1.500 |
| :---: | :---: | :---: | :---: |

The nitrogen is a whole number (1.00) and the hydrogen will round to a whole number (2.00), but the oxygen is not a whole number
1
2
1.500

Step 4 Multiply to get a whole number. In order to turn 1.5 into a whole number, we need to multiply by 2 - therefore all results must be multiplied by 2.

2
4
3

Final Answer: 2:4:3, therefore the empirical formula is $\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$

