Chemical Quantities

Measuring matter

- A mass
- A volume
- A count

Count

- One dozen = 12
- One mole $=$ Avogadro's number of items
- Avogadro's number $=6.022 \times 10^{23}$

Molar Mass - the mass of one mole of a substance

Determine the molar mass of the following substances.

1. Carbon

$$
C=12.011 \mathrm{~g} / \mathrm{mol}
$$

2. Iron
$\mathrm{Fe}=55.847 \mathrm{~g} / \mathrm{mol}$
3. water $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{ll}
2(\mathrm{H}) & 2(1.00794 \mathrm{~g} / \mathrm{mol}) \\
1(\mathrm{O}) & 1(15.9994 \mathrm{~g} / \mathrm{mol}) \\
\hline & 18.01528 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

4. ammonium carbonate

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	$2(\mathrm{~N})$	$2(14.0067 \mathrm{~g} / \mathrm{mol})$
	$8(\mathrm{H})$	$8(1.00794 \mathrm{~g} / \mathrm{mol})$
	$1(\mathrm{C})$	$1(12.011 \mathrm{~g} / \mathrm{mol})$
	$3(\mathrm{O})$	$3(15.9994 \mathrm{~g} / \mathrm{mol})$
		$96.08612=96.086 \mathrm{~g} / \mathrm{mol}$

Converting between moles and mass.

$$
\text { moles }=\frac{\text { mass }}{\text { molar mass }} \quad \text { or } \quad \text { mass }=(\text { moles })(\text { molar mass })
$$

Example: What is the mass of 5.00 mol of water?

```
Mass = (moles)(molar mass)
    = (5.00 mol)(18.105 28 g/mol)
    = 90.0764
    = 90.1 g/mol
```


Molar Volume

- The volume occupied by one mole of a gas at STP
- $S T P=$ standard temperature and pressure
- $\operatorname{STP}=0^{\circ} \mathrm{C}$ and 101.3 kPa
- The molar volume of any gas at STP is $22.4 \mathrm{~L} / \mathrm{mol}$

$$
\text { moles }=\frac{\text { volume of gas }}{\text { molar mass }} \text { or volume of gas }=(\text { moles })(\text { molar volume })
$$

Example: What is the volume of 3.00 mol of carbon dioxide at STP?

$$
\begin{aligned}
\text { Volume } & =(\text { moles })(\text { molar volume }) \\
& =(3.00 \mathrm{~mol})(22.4 \mathrm{~L} / \mathrm{mol}) \\
& =67.2 \mathrm{~L}
\end{aligned}
$$

The Mole Triangle

$$
\begin{aligned}
& \mathrm{mol}=\frac{\text { mass }}{\text { molar mass }} \\
& \mathrm{mol}=\frac{\text { volume of gas }}{\text { molar volume }}
\end{aligned}
$$

$$
\text { mol }=\frac{\text { representative particles }}{\text { Avogadro's Number }}
$$

Molarity

- A method of expressing the concentration of a solution

$$
\begin{aligned}
\text { Molarity } & =\frac{\text { moles of solute }}{\text { volume }\left(L \text { or } \mathrm{dm}^{3}\right) \text { of solution }} \\
C & =\frac{n}{V} \\
C & =\text { concentration (molarity) } \\
n & =\text { number of moles } \\
V & =\text { volume }\left(L \text { or } d m^{3}\right)
\end{aligned}
$$

Example: Determine the molarity of a solution that contains 25.0 g of sodium hydroxide in 300.0 mL of solution.

$$
\begin{aligned}
& \mathrm{mol}=\frac{\text { mass }}{\text { molar mass }}=\frac{25.0 \mathrm{~g} \mathrm{NaOH}}{39.99711 \mathrm{~g} / \mathrm{mol}}=0.625 \mathrm{~mol} \\
& C=\frac{n}{V}-=\frac{0.625 \mathrm{~mol}}{0.3000 \mathrm{~L}}=2.08 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

