Table of Some Common Ions and Acids

$\mathbf{+ 5}$	
Antimony (V)	Sb
Arsenic (V)	As
Bismuth (V)	Bi

Acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Bromate	BrO_{3}
Bromide	Br
Chlorate	ClO_{3}
Chlorite	ClO_{2}
Chloride	Cl
Cyanide	CN
Fluoride	F
Hydride	H
Hydrogen Carbonate or Bicarbonate	HCO_{3}

Hydrogen Sulfate or	
Bisulfate	HSO_{4}

Hydrogen Sulfite or Bisulfite	
Hydroxide	HSO_{3}
Hypochlorite	OH
Hydrogen Sulfide	ClO
Iodate	HS
Iodide	IO_{3}
Nitrate	I
Nitrite	NO_{3}
Perchlorate	NO_{2}
Permanganate	ClO_{4}
Thiocynate	MnO_{4}
	SCN

Mechanisms and rules for writing chemical formulas:

THE CRISS-CROSS METHOD

RULE 1: The resulting formula for a compound must have a total charge of zero (0).
RULE 2: Write the positive ion first and cross the valences.
RULE 3: Do not cross any signs.
RULE 4: Don't cross any ones.
RULE 5: If both valences are the same, don't cross them.
RULE 6: More than one atom, more than one time, use parentheses
RULE 7: If the final answer has subscripts that can be reduced, they must be reduced.
RULE 8: If the name of the compound has prefixes in it, change the prefixes to subscripts and do not cross the valences.

-2	
Carbonate	CO_{3}
Chromate	CrO_{4}
Cyanamide	CN_{2}
Dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}$
Hydrogen Phosphate	HPO_{4}
Oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}$
Oxide	0
Peroxide	O_{2}
Stannate	SnO_{3}
Stannite	SnO_{2}
Sulfate	SO_{4}
Sulfite	SO_{3}
Sulfide	S
Tartrate	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
-3	
Borate	BO_{3}
Hexacyanoferrate (III) or	
Ferricyanide	$\mathrm{Fe}(\mathrm{CN}) 6$
Phosphate	PO_{4}
Phosphite	PO_{3}
Phosphide	P
Nitride	N

-4	
Hexacyanoferrate (II) or	
Ferrocyanide	$\mathrm{Fe}(\mathrm{CN})_{6}$
Silicate	SiO_{4}

Some Common Acids	
Acetic	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$
Hydrochloric	HCl
Hydrobromic	HBr
Hydrofluoric	HF
Nitric	HNO_{3}
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$

