Oxidation-Reduction Reactions

Oxidation-reduction (redox) reactions are reactions in which oxidation numbers change. Oxidation numbers are either real charges or formal charges which help chemists keep track of electron transfer. In practice, oxidation numbers are best viewed as a bookkeeping device.

- Oxidation cannot occur without reduction.
- In a redox reaction, the substance oxidized contains atoms which increase in oxidation number.

Oxidation is associated with electron loss (helpful mnemonic: $\mathbf{L E O}=\underline{\text { Loss }}$ of $\underline{\text { Electrons, }}$ Oxidation).

- The substance reduced contains atoms which decrease in oxidation number during the reaction. Reduction is associated with electron gain (helpful mnemonic: $\boldsymbol{G E R}=\underline{\text { Gain }}$ of Electrons, Reduction).
- An oxidizing agent is a substance which oxidizes something else: it itself is reduced! Also, a reducing agent is a substance that reduces another reactant: it itself is oxidized.
- A disproportionation reaction is a reaction in which the same element is both oxidized and reduced.

How to Assign Oxidation Numbers: The Fundamental Rules

- The oxidation number of any pure element is zero. Thus the oxidation number of H in H_{2} is zero.
- The oxidation number of a monatomic ion is equal to its charge. Thus the oxidation number of Cl in the Cl^{-}ion is -1 , that for Mg in the $\mathrm{Mg}+2$ ion is +2 , and that for oxygen in O^{2-} ion is -2 .
- The sum of the oxidation numbers in a compound is zero if neutral, or equal to the charge if an ion.
- The oxidation number of alkali metals in compounds is +1 , and that of alkaline earths in compounds is +2 . The oxidation number of F is -1 in all its compounds.
- The oxidation number of \underline{H} is +1 in most compounds. Exceptions are $\mathrm{H}_{2}($ where $\mathrm{H}=0)$ and the ionic hydrides, such as NaH (where $\mathrm{H}=-1$).
- The oxidation number of oxygen (O) is -2 in most compounds. Exceptions are O_{2} (where $\mathrm{O}=$ 0) and peroxides, such as $\mathrm{H}_{2} \mathrm{O}_{2}$ or $\mathrm{Na}_{2} \mathrm{O}_{2}$, where $\mathrm{O}=-1$.
- For other elements, you can usually use the sum rule above to solve for the unknown oxidation number.

Examples:

$\mathrm{NO}(\mathrm{g})$ has $\mathrm{O}=-2$, so $\mathrm{N}=+2$.
$\mathrm{NO}_{2}(\mathrm{~g})$ has two oxygen atoms and each has $\mathrm{O}=-2$. Thus $\mathrm{N}+2(-2)=0$, so $\mathrm{N}=+4$.
$\mathrm{SO}_{4}{ }^{2-}$ has $\mathrm{O}=-2$. Thus $\mathrm{S}+4(-2)=-2$. Solving the equation gives $\mathrm{S}=-2+8=+6$.
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ has $\mathrm{K}=+1$ and $\mathrm{O}=-2$. Thus $2(+1)+2 \mathrm{Cr}+7(-2)=0 ; 2 \mathrm{Cr}=12 ; \mathrm{Cr}=+6$.

Recognizing Oxidation-Reduction Reactions

Oxidation-reduction reactions are reactions in which one type of atom increases in oxidation number (is oxidized) and another type of atom decreases in oxidation number (is reduced). Thus to show that a reaction is a redox reaction, you need to calculate oxidation numbers for the atoms in the reactants and products, and document that changes are taking place. There are, however, a few useful generalizations.

- A large number (but not all!) of oxidation-reduction reactions contain one or more reactants or products which are pure elements. Why is this true? Also, all electrochemical reactions are redox reactions.
- Most acid-base reactions and most precipitation reactions are not redox reactions. Why? Give some examples!

