1. Identify the oxidizing agent in ${\rm Al} \; + \; {\rm H}^+ \; \longrightarrow \; {\rm Al}^{3+} \; + \; {\rm H}_2 \, .$

[1]

2. Identify the reducing agent in ${\rm H_2SO_4}$ + ${\rm MnO_2}$ \rightarrow ${\rm SO_4}^{2-}$ + ${\rm Mn}^{2+}$.

[2]

- 3. Find the oxidation number of the underlined atom in
 - a) $H_2\underline{S}$.
 - b) \underline{IO}_4^- .

[3]

4. Is the following an oxidation-reduction reaction? If yes, name the element reduced.

 $\mathrm{Br}_2 + \mathrm{SO}_3^{2-} \rightarrow \mathrm{Br}^- + \mathrm{SO}_4^{2-}$

[4]

5. Is the following an oxidation-reduction reaction? If yes, name the element oxidized.

 $N_2 + H_2 \rightarrow NH_3$

[5]

6. Balance the following oxidation-reduction reaction in acidic solution. How many $\rm H_{2}O$ molecules are needed?

 $\text{Mn}^{+2} + \text{NaBiO}_3 \rightarrow \text{Bi}^{+3} + \text{MnO}_4^{-}$

[6]

7. Balance the following oxidation-reduction reaction in basic solution. How many $\rm H_2O$ molecules are there?

 $MnO_4^- + Br^- \rightarrow MnO_2^- + BrO_3^-$

[7]