Titrations

- Stoichiometry with solutions
- A titration is a laboratory technique where the concentration (or other quantity) of a solution can be determined by adding it to a solution of known concentration in carefully measured amounts until the reaction is complete. Titrations are most commonly associated with acid-base reactions, but they can be used with other types of reactions as well.

Step 1- write the complete balanced equation for the reaction that is occurring
Step 2 - calculate of the known substance
Step 3 - use the mole ratio (from the balanced chemical equation) to calculate moles of the unknown substance
Step 4 - convert from moles to the specified quantity
Example What is the molarity of a sodium hydroxide solution if 25.0 mL is required to neutralize 40.0 mL of a 1.50 M solution of sulfuric acid?

Step $1 \quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Step $2 n=C \cdot V=(1.50 \mathrm{~mol} / \mathrm{L})(0.0400 \mathrm{~L})=0.0600 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
Step $3 \quad\left(0.0600 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right)=0.120 \mathrm{~mol} \mathrm{NaOH}$
Step $4 \quad C=\frac{n}{V}=\frac{0.120 \mathrm{~mol}}{0.0250 \mathrm{~L}}=4.80 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$

Titrations - alternate method

$\frac{C_{a} V_{a}}{R_{a}}=\frac{C_{b} V_{b}}{R_{b}}$
$C_{a}=$ concentration of substance A
$V_{a}=$ volume of substance A
$R_{a}=$ ratio of substance A (from the balanced chemical equation)
$C_{b}=$ concentration of substance B
$V_{b}=$ volume of substance B
$R_{a}=$ ratio of substance B (from the balanced chemical equation)
Example What is the molarity of a sodium hydroxide solution if 25.0 mL is required to neutralize 40.0 mL of a 1.50 M solution of sulfuric acid?

Step $1 \quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{lll}
\text { Step 2 } & C_{a}=1.50 \mathrm{~mol} / \mathrm{L} & C_{b}=? \\
V_{a}=40.0 \mathrm{~mL}=0.0400 \mathrm{~L} & V_{b}=25.0 \mathrm{~mL}=0.0250 \mathrm{~L} \\
R_{a}=1 & R_{a}=2
\end{array} \quad \begin{aligned}
& C_{a} V_{a} \\
& R_{a} \\
& =\frac{C_{b} V_{b}}{R_{b}} \\
& C_{b}=\frac{C_{a} V_{a} R_{b}}{V_{b} R_{a}}=\frac{(1.50 \mathrm{~mol} / \mathrm{L})(0.0400 \mathrm{~L})(2)}{(0.0250 \mathrm{~L})(1)}=4.80 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}
\end{aligned}
$$

