Calorimeters

Notes and Examples

Solving calorimeter questions
Heat released by the reaction = heat absorbed by the calorimeter + the water in the calorimeter Specific heat capacity is listed in data booklet

Example A

Substance X has a molar mass of $107.6 \mathrm{~g} / \mathrm{mol}$. When 2.50 g of substance X burns in an iron calorimeter, the temperature of the calorimeter $(1.250 \mathrm{~kg})$ and the water $(2.000 \mathrm{~kg})$ increases from $25.8^{\circ} \mathrm{C}$ to $38.7^{\circ} \mathrm{C}$. Calculate the heat of combustion of substance X in $\mathrm{kJ} / \mathrm{mol}$.

Heat released by reaction = heat absorbed by calorimeter + water in calorimeter

$$
\begin{aligned}
& q=m c \Delta t(\text { calorimeter })+m c \Delta t(\text { water }) \\
& q=(1.250 \mathrm{~kg})\left(0.444 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(12.9^{\circ} \mathrm{C}\right)+(2.000 \mathrm{~kg})\left(4.18 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(12.9^{\circ} \mathrm{C}\right) \\
& q=7.1595 \mathrm{~kJ}+107.844 \mathrm{~kJ} \\
& q=115.0035 \mathrm{~kJ}
\end{aligned}
$$

The water and the calorimeter absorb 115 kJ of energy. \therefore when 2.50 g of X burns, it releases 115 kJ

$$
\mathrm{n}=\frac{\text { mass }}{\text { molar mass }}=\frac{2.50 \mathrm{~g}}{107.6 \mathrm{~g} / \mathrm{mol}}=0.0232 \mathrm{~mol}
$$

Set up a ratio to solve for the heat for one mole.
$\frac{0.0232 \mathrm{~mol}}{1}=\frac{-115 \mathrm{~mol}}{x}$
$x=-4949.75064 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {comb }}=-4950 \mathrm{~kJ} / \mathrm{mol}$
(note: the heat is now negative because substance X releases heat when it burns)

Example B

50.0 mL of $0.800 \mathrm{~mol} / \mathrm{L}$ hydrobromic acid was added to 50.0 mL of $0.800 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide in a styrene cup. Initial temperature of both solutions was $23.18^{\circ} \mathrm{C}$. Final temperature was $26.38^{\circ} \mathrm{C}$. Calculate the heat of reaction per mole of hydrobromic acid.
$\mathrm{HBr}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Notes:

1. When a styrene (Styrofoam) cup is used, often it is ignored in the calculations. It is assumed that the heat absorbed by the cup is negligible. If the heat absorbed by the cup should be included in the calculations, information about the heat capacity or specific heat capacity will be given in the question.
2. When a dilute solution is used, treat the solution as if it was water. This means that the solution is treated as if it has the same density as water ($1.00 \mathrm{~g} / \mathrm{mL}$) and the same specific heat capacity as water ($4.18 \mathrm{~J} / 9^{\circ} \mathrm{C}$)

Heat released by reaction = heat absorbed by calorimeter + water in calorimeter Heat released by reaction = heat absorbed by water in calorimeter (ignoring the styrene cup)
$q=m c \Delta t \quad$ - the two solutions are the "water"
$q=(100.0 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(3.20^{\circ} \mathrm{C}\right) \quad-\quad 50.0 \mathrm{~g} \mathrm{HBr}+50.0 \mathrm{~g} \mathrm{KOH}=100.0 \mathrm{~g}$ "water"
$q=1337.6 \mathrm{~J}$
1.34 kJ is absorbed by the water in the calorimeter,
$\therefore 1.34 \mathrm{~kJ}$ is released when 50.0 mL of HBr reacts
$c=\frac{n}{V}$
$n=C V=(0.800 \mathrm{~mol} / \mathrm{L})(0.0500 \mathrm{~L})=0.0400 \mathrm{~mol} \mathrm{HBr}$
$\therefore 1.34 \mathrm{~kJ}$ is released when 0.0400 mol HBr reacts
set up a ratio to calculate the heat for one mole
$\frac{0.0400 \mathrm{~mol}}{1.00 \mathrm{~mol}}=\frac{-1.34 \mathrm{~kJ}}{x}$
$x=-33.44 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{r x n}=-33.4 \mathrm{~kJ} / \mathrm{mol}$

