Thermochemistry

1. Given: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+92.5 \mathrm{KJ}$, what is $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{NH}_{3}(\mathrm{~g})$?
2. Given: $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=175 \mathrm{~kJ}$ $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CaO}(\mathrm{s}) \quad \Delta \mathrm{H}=67 \mathrm{~kJ}$ $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-198 \mathrm{~kJ}$
Calculate $\Delta \mathrm{H}_{\mathrm{rx}}$ for $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
3. The heat of combustion of naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s})$ is -5162 kJ . What is the heat of formation of naphthalene?
4. Calculate the amount of heat given off when 100.0 g of $C_{7} H_{8}(I)$ burns. The: $\Delta H_{f}=50.0 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{C}_{7} \mathrm{H}_{8}(\mathrm{I})$,
5. The standard enthalpy of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ is $-1301 \mathrm{~kJ} / \mathrm{mol}$. What is the standard enthalpy of formation for $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$?
6. How much heat will be required to make 1.00 kg of $\mathrm{CaC}_{2}(s)$ according to the reaction given below? The ΔH_{f} value for $\mathrm{CaC}_{2}(\mathrm{~s})$ is $-63 \mathrm{~kJ} / \mathrm{mol}$.

$$
\mathrm{CaO}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})
$$

7. $\quad 150.0 \mathrm{~mL}$ of $0.200 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ was added to 150.0 mL of $0.200 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ in a styrene cup Initial temperature of both solutions was $25.0^{\circ} \mathrm{C}$. The final temperature was $27.1^{\circ} \mathrm{C}$. Calculate the heat of reaction per mole of hydrochloric acid.
8. In an aluminum calorimeter, 20.0 g of nitrogen was burned in oxygen to produce nitrogen monoxide. From the following data, find the heat of reaction per mole of nitrogen burned.

- Mass of nitrogen burned	20.0 g
- Mass of aluminum calorimeter	70.37 g
-	Volume of water in calorimeter
- Initial temperature	500.0 mL
-	$72.60^{\circ} \mathrm{C}$
Final temperature	$82.80^{\circ} \mathrm{C}$

9. In a styrene cup, some solid copper was oxidized in excess oxygen to produce copper(II) oxide Use the data below to establish the heat of reaction per mole of copper.

- Mass of copper
1.00 g
- Mass of water in calorimeter $\quad 100.0 \mathrm{~g}$
- Initial temperature of water $\quad 21.0^{\circ} \mathrm{C}$
- Final temperature of water
$26.9^{\circ} \mathrm{C}$

10. In an aluminum calorimeter, 25.00 g of iodine was burned in excess hydrogen to produce hydrogen iodide gas. From the data below, establish the heat of reaction per mole of iodine.

- Mass of iodine
25.00 g
- Mass of aluminum calorimeter
70.0 g
- Volume of water in calorimeter $\quad 100.0 \mathrm{~mL}$
- Initial temperature
$23.8^{\circ} \mathrm{C}$
- Final temperature

11. Sodium was burned in oxygen to burn sodium oxide. An aluminum calorimeter was used. Calculate the heat of reaction per mole of sodium oxide formed.

- Mass of sodium	1.00 g	
-	Mass of aluminum calorimeter	25.31 g
- Volume of water in calorimeter	350.0 mL	
- Initial temperature	$27.511^{\circ} \mathrm{C}$	
-	Final temperature	$31.82^{\circ} \mathrm{C}$

12. 0.844 g of formaldehyde (methanal), HCHO , reacted with oxygen in a styrofoam calorimeter to produce carbon dioxide and water. The mass of water in the calorimeter was 150.0 g and the temperature increased from $21.8^{\circ} \mathrm{C}$ to $45.1^{\circ} \mathrm{C}$. Calculate the heat of reaction per mole of formaldehyde burned.
13. Exactly 3.00 g of $\mathrm{C}(\mathrm{s})$ was burned to $\mathrm{CO}_{2}(\mathrm{~g})$ in a copper calorimeter. The mass of the calorimeter was 1.500 kg and the mass of the water in which the calorimeter was immersed was 2.000 kg . The initial temperature of the system was $20.0^{\circ} \mathrm{C}$ and the final temperature was $31.0^{\circ} \mathrm{C}$. Calculate the heat of formation of $\mathrm{CO}_{2}(\mathrm{~g})$, under the conditions present in the calorimeter.
14. The specific heat capacity of $\mathrm{Ni}(s)$ is $0.444 \mathrm{~kJ} / \mathrm{Kg}^{\circ} \mathrm{C}$. A 3.85 g sample of benzoic acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s})$, was burned in a nickel calorimeter having a mass of 0.850 kg and immersed in 1.200 kg of water. The initial temperature of the system was $23.0^{\circ} \mathrm{C}$ and the final temperature was $41.0^{\circ} \mathrm{C}$. Calculate the heat of combustion of benzoic acid, under the conditions present inside the calorimeter.
15. A 2.50 g sample of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$ was burned in a 2.100 kg iron calorimeter immersed in 1.450 kg of water. The initial temperature of the system was $24.32^{\circ} \mathrm{C}$ and the final temperature was $30.20^{\circ} \mathrm{C}$. Determine the heat of combustion of sucrose, under the conditions present inside the calorimeter.
16. $\quad 50.0 \mathrm{~mL}$ of $0.800 \mathrm{~mol} / \mathrm{L}$ hydrobromic acid was added to 50.0 mL of $0.800 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide in a styrene cup. Initial temperature of both solutions was $23.18^{\circ} \mathrm{C}$. Final temperature was $26.38^{\circ} \mathrm{C}$. Calculate the heat of reaction per mole of hydrobromic acid.
17. When 50.0 mL of $1.00 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ and 50.0 mL of $1.00 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ are mixed in a "coffee cup" calorimeter, the temperature of the resulting solution increases from $21.0^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$. Use the specific heat capacity of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, given on page one of the Chemistry Data Booklet, to calculate the heat of this reaction measured in kilojoules per mole of $\mathrm{HCl}(\mathrm{aq})$.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

18. We often have to make assumptions when we conduct laboratory experiments. Consider carefully the experiment described in question 17, and list four unstated assumptions that must be made in order for one to determine the heat of reaction.
